欧美一级特黄大片做受成人-亚洲成人一区二区电影-激情熟女一区二区三区-日韩专区欧美专区国产专区

Python抓新型冠狀病毒肺炎疫情數(shù)據(jù)并繪制全國(guó)疫情分布的案例分析-創(chuàng)新互聯(lián)

這篇文章主要介紹Python抓新型冠狀病毒肺炎疫情數(shù)據(jù)并繪制全國(guó)疫情分布的案例分析,文中介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們一定要看完!

霞浦ssl適用于網(wǎng)站、小程序/APP、API接口等需要進(jìn)行數(shù)據(jù)傳輸應(yīng)用場(chǎng)景,ssl證書(shū)未來(lái)市場(chǎng)廣闊!成為創(chuàng)新互聯(lián)的ssl證書(shū)銷(xiāo)售渠道,可以享受市場(chǎng)價(jià)格4-6折優(yōu)惠!如果有意向歡迎電話(huà)聯(lián)系或者加微信:028-86922220(備注:SSL證書(shū)合作)期待與您的合作!

運(yùn)行結(jié)果(2020-2-4日數(shù)據(jù))

Python抓新型冠狀病毒肺炎疫情數(shù)據(jù)并繪制全國(guó)疫情分布的案例分析

Python抓新型冠狀病毒肺炎疫情數(shù)據(jù)并繪制全國(guó)疫情分布的案例分析

數(shù)據(jù)來(lái)源

news.qq.com/zt2020/page/feiyan.htm

Python抓新型冠狀病毒肺炎疫情數(shù)據(jù)并繪制全國(guó)疫情分布的案例分析

抓包分析

Python抓新型冠狀病毒肺炎疫情數(shù)據(jù)并繪制全國(guó)疫情分布的案例分析

Python抓新型冠狀病毒肺炎疫情數(shù)據(jù)并繪制全國(guó)疫情分布的案例分析

日?qǐng)?bào)數(shù)據(jù)格式

"chinaDayList": [{
		"date": "01.13",
		"confirm": "41",
		"suspect": "0",
		"dead": "1",
		"heal": "0"
	}, {
		"date": "01.14",
		"confirm": "41",
		"suspect": "0",
		"dead": "1",
		"heal": "0"
	}, {
		"date": "01.15",
		"confirm": "41",
		"suspect": "0",
		"dead": "2",
		"heal": "5"
	}, {
	。。。。。。

全國(guó)各地疫情數(shù)據(jù)格式

	"lastUpdateTime": "2020-02-04 12:43:19",
	"areaTree": [{
		"name": "中國(guó)",
		"children": [{
			"name": "湖北",
			"children": [{
				"name": "武漢",
				"total": {
					"confirm": 6384,
					"suspect": 0,
					"dead": 313,
					"heal": 303
				},
				"today": {
					"confirm": 1242,
					"suspect": 0,
					"dead": 48,
					"heal": 79
				}
			}, {
				"name": "黃岡",
				"total": {
					"confirm": 1422,
					"suspect": 0,
					"dead": 19,
					"heal": 36
				},
				"today": {
					"confirm": 176,
					"suspect": 0,
					"dead": 2,
					"heal": 9
				}
			}, {
			。。。。。。

地圖數(shù)據(jù)

github.com/dongli/china-shapefiles

代碼實(shí)現(xiàn)

#%%

import time, json, requests
from datetime import datetime
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from matplotlib.font_manager import FontProperties
from mpl_toolkits.basemap import Basemap
from matplotlib.patches import Polygon
import numpy as np
import jsonpath

plt.rcParams['font.sans-serif'] = ['SimHei'] # 用來(lái)正常顯示中文標(biāo)簽
plt.rcParams['axes.unicode_minus'] = False # 用來(lái)正常顯示負(fù)號(hào)

#%%

# 全國(guó)疫情地區(qū)分布(省級(jí)確診病例)
def catch_cn_disease_dis():
 timestamp = '%d'%int(time.time()*1000)
 url_area = ('https://view.inews.qq.com/g2/getOnsInfo?name=disease_h6'
    '&callback=&_=') + timestamp
 world_data = json.loads(requests.get(url=url_area).json()['data'])
 china_data = jsonpath.jsonpath(world_data, 
         expr='$.areaTree[0].children[*]')
 list_province = jsonpath.jsonpath(china_data, expr='$[*].name')
 list_province_confirm = jsonpath.jsonpath(china_data, expr='$[*].total.confirm')
 dic_province_confirm = dict(zip(list_province, list_province_confirm)) 
 return dic_province_confirm

area_data = catch_cn_disease_dis()
print(area_data)

#%%

# 抓取全國(guó)疫情按日期分布
'''
數(shù)據(jù)源:
"chinaDayList": [{
		"date": "01.13",
		"confirm": "41",
		"suspect": "0",
		"dead": "1",
		"heal": "0"
	}, {
		"date": "01.14",
		"confirm": "41",
		"suspect": "0",
		"dead": "1",
		"heal": "0"
	}
'''
def catch_cn_daily_dis():
 timestamp = '%d'%int(time.time()*1000)
 url_area = ('https://view.inews.qq.com/g2/getOnsInfo?name=disease_h6'
    '&callback=&_=') + timestamp
 world_data = json.loads(requests.get(url=url_area).json()['data'])
 china_daily_data = jsonpath.jsonpath(world_data, 
         expr='$.chinaDayList[*]')

 # 其實(shí)沒(méi)必要單獨(dú)用list存儲(chǔ),json可讀性已經(jīng)很好了;這里這樣寫(xiě)僅是為了少該點(diǎn)老版本的代碼  
 list_dates = list() # 日期
 list_confirms = list() # 確診
 list_suspects = list() # 疑似
 list_deads = list() # 死亡
 list_heals = list() # 治愈  
 for item in china_daily_data:
  month, day = item['date'].split('.')
  list_dates.append(datetime.strptime('2020-%s-%s'%(month, day), '%Y-%m-%d'))
  list_confirms.append(int(item['confirm']))
  list_suspects.append(int(item['suspect']))
  list_deads.append(int(item['dead']))
  list_heals.append(int(item['heal']))  
 return list_dates, list_confirms, list_suspects, list_deads, list_heals  

list_date, list_confirm, list_suspect, list_dead, list_heal = catch_cn_daily_dis() 
print(list_date)
 

#%%

# 繪制每日確診和死亡數(shù)據(jù)
def plot_cn_daily():
 # list_date, list_confirm, list_suspect, list_dead, list_heal = catch_cn_daily_dis() 
 
 plt.figure('novel coronavirus', facecolor='#f4f4f4', figsize=(10, 8))
 plt.title('全國(guó)新型冠狀病毒疫情曲線(xiàn)', fontsize=20)
 print('日期元素?cái)?shù):', len(list_date), "\n確診元素?cái)?shù):", len(list_confirm))
 plt.plot(list_date, list_confirm, label='確診')
 plt.plot(list_date, list_suspect, label='疑似')
 plt.plot(list_date, list_dead, label='死亡')
 plt.plot(list_date, list_heal, label='治愈')
 xaxis = plt.gca().xaxis 
 # x軸刻度為1天
 xaxis.set_major_locator(matplotlib.dates.DayLocator(bymonthday=None, interval=1, tz=None))
 xaxis.set_major_formatter(mdates.DateFormatter('%m月%d日'))
 plt.gcf().autofmt_xdate() # 優(yōu)化標(biāo)注(自動(dòng)傾斜)
 plt.grid(linestyle=':') # 顯示網(wǎng)格
 plt.xlabel('日期',fontsize=16)
 plt.ylabel('人數(shù)',fontsize=16)
 plt.legend(loc='best')
 
plot_cn_daily()

#%%

# 繪制全國(guó)省級(jí)行政區(qū)域確診分布圖
count_iter = 0
def plot_cn_disease_dis():
 # area_data = catch_area_distribution()
 font = FontProperties(fname='res/coure.fon', size=14)
 
 # 經(jīng)緯度范圍
 lat_min = 10 # 緯度
 lat_max = 60
 lon_min = 70 # 經(jīng)度
 lon_max = 140
  
 # 標(biāo)簽顏色和文本 
 legend_handles = [
    matplotlib.patches.Patch(color='#7FFFAA', alpha=1, linewidth=0),
    matplotlib.patches.Patch(color='#ffaa85', alpha=1, linewidth=0),
    matplotlib.patches.Patch(color='#ff7b69', alpha=1, linewidth=0),
    matplotlib.patches.Patch(color='#bf2121', alpha=1, linewidth=0),
    matplotlib.patches.Patch(color='#7f1818', alpha=1, linewidth=0),
 ]
 legend_labels = ['0人', '1-10人', '11-100人', '101-1000人', '>1000人']

 fig = plt.figure(facecolor='#f4f4f4', figsize=(10, 8)) 
 # 新建區(qū)域
 axes = fig.add_axes((0.1, 0.1, 0.8, 0.8)) # left, bottom, width, height, figure的百分比,從figure 10%的位置開(kāi)始繪制, 寬高是figure的80%
 axes.set_title('全國(guó)新型冠狀病毒疫情地圖(確診)', fontsize=20) # fontproperties=font 設(shè)置失敗 
 # bbox_to_anchor(num1, num2), num1用于控制legend的左右移動(dòng),值越大越向右邊移動(dòng),num2用于控制legend的上下移動(dòng),值越大,越向上移動(dòng)。
 axes.legend(legend_handles, legend_labels, bbox_to_anchor=(0.5, -0.11), loc='lower center', ncol=5) # prop=font
 
 china_map = Basemap(llcrnrlon=lon_min, urcrnrlon=lon_max, llcrnrlat=lat_min, urcrnrlat=lat_max, resolution='l', ax=axes)
 # labels=[True,False,False,False] 分別代表 [left,right,top,bottom]
 china_map.drawparallels(np.arange(lat_min,lat_max,10), labels=[1,0,0,0]) # 畫(huà)經(jīng)度線(xiàn)
 china_map.drawmeridians(np.arange(lon_min,lon_max,10), labels=[0,0,0,1]) # 畫(huà)緯度線(xiàn)
 china_map.drawcoastlines(color='black') # 洲際線(xiàn)
 china_map.drawcountries(color='red') # 國(guó)界線(xiàn)
 china_map.drawmapboundary(fill_color = 'aqua')
 # 畫(huà)中國(guó)國(guó)內(nèi)省界和九段線(xiàn)
 china_map.readshapefile('res/china-shapefiles-master/china', 'province', drawbounds=True)
 china_map.readshapefile('res/china-shapefiles-master/china_nine_dotted_line', 'section', drawbounds=True)
 
 global count_iter
 count_iter = 0
 
 # 內(nèi)外循環(huán)不能對(duì)調(diào),地圖中每個(gè)省的數(shù)據(jù)有多條(繪制每一個(gè)shape,可以去查一下第一條“臺(tái)灣省”的數(shù)據(jù))
 for info, shape in zip(china_map.province_info, china_map.province):
  pname = info['OWNER'].strip('\x00')
  fcname = info['FCNAME'].strip('\x00')
  if pname != fcname: # 不繪制海島
   continue
  is_reported = False # 西藏沒(méi)有疫情,數(shù)據(jù)源就不取不到其數(shù)據(jù) 
  for prov_name in area_data.keys():    
   count_iter += 1
   if prov_name in pname:
    is_reported = True
    if area_data[prov_name] == 0:
     color = '#f0f0f0'
    elif area_data[prov_name] <= 10:
     color = '#ffaa85'
    elif area_data[prov_name] <= 100:
     color = '#ff7b69'
    elif area_data[prov_name] <= 1000:
     color = '#bf2121'
    else:
     color = '#7f1818'
    break
   
  if not is_reported:
   color = '#7FFFAA'
   
  poly = Polygon(shape, facecolor=color, edgecolor=color)
  axes.add_patch(poly)
  

plot_cn_disease_dis()
print('迭代次數(shù)', count_iter)
python的數(shù)據(jù)類(lèi)型有哪些?

python的數(shù)據(jù)類(lèi)型:1. 數(shù)字類(lèi)型,包括int(整型)、long(長(zhǎng)整型)和float(浮點(diǎn)型)。2.字符串,分別是str類(lèi)型和unicode類(lèi)型。3.布爾型,Python布爾類(lèi)型也是用于邏輯運(yùn)算,有兩個(gè)值:True(真)和False(假)。4.列表,列表是Python中使用最頻繁的數(shù)據(jù)類(lèi)型,集合中可以放任何數(shù)據(jù)類(lèi)型。5. 元組,元組用”()”標(biāo)識(shí),內(nèi)部元素用逗號(hào)隔開(kāi)。6. 字典,字典是一種鍵值對(duì)的集合。7. 集合,集合是一個(gè)無(wú)序的、不重復(fù)的數(shù)據(jù)組合。

以上是“Python抓新型冠狀病毒肺炎疫情數(shù)據(jù)并繪制全國(guó)疫情分布的案例分析”這篇文章的所有內(nèi)容,感謝各位的閱讀!希望分享的內(nèi)容對(duì)大家有幫助,更多相關(guān)知識(shí),歡迎關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道!

分享題目:Python抓新型冠狀病毒肺炎疫情數(shù)據(jù)并繪制全國(guó)疫情分布的案例分析-創(chuàng)新互聯(lián)
網(wǎng)站網(wǎng)址:http://aaarwkj.com/article10/dopjgo.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供網(wǎng)站導(dǎo)航、App開(kāi)發(fā)、定制開(kāi)發(fā)、ChatGPT、網(wǎng)站制作、云服務(wù)器

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶(hù)投稿、用戶(hù)轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請(qǐng)盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀(guān)點(diǎn)不代表本網(wǎng)站立場(chǎng),如需處理請(qǐng)聯(lián)系客服。電話(huà):028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來(lái)源: 創(chuàng)新互聯(lián)

營(yíng)銷(xiāo)型網(wǎng)站建設(shè)
女人高潮被爽到呻吟在线| 日韩av有码在线播放| 亚洲黄色艳情视频录像| 国产亚洲一区二区自拍视频| 日韩电影在线一本二本三本| 久久精品一区二区东京热| 中文字幕人妻丝袜一区一三区| 亚洲最大午夜福利视频| 91白丝视频在线观看| 四虎精品永久在线视频| 日韩欧美亚洲另类激情一区| 天天操天天干夜夜射| 在线播放国产91精品| 丝袜美腿精尽福利视频网址大全 | 亚洲女同成人在线观看| 日韩欧美人妻中文字幕| 麻豆精品国产一区二区91| 要爽死国产一区在线播放| 日韩欧美中文字幕区| 久草视频在线免费资源站| 东京一区二区三区四区黄片| 国产激情一区二区三区| 亚洲精品在线观看第一页| 亚洲桃色一区二区三区四区| 人妻中文字幕日韩av| 国产91黑丝在线视频| 国产午夜亚洲精品福利| 传媒视频免费在线观看| 国产亚洲精品麻豆一区二区| 91国内精品手机在线高清| 欧美日韩精品人妻一区| 国产精品一区在线播放| 日本成人精品二区在线观看| 未满十八在线观看网址| 日韩国产传媒视频在线观看| 日韩精品一二三区乱码| 美女后入式在线观看| 三级黄色片免费久久久| 在线看片国产精品自拍| av在线日韩国产精品| 亚洲香蕉av一区二区蜜桃|