欧美一级特黄大片做受成人-亚洲成人一区二区电影-激情熟女一区二区三区-日韩专区欧美专区国产专区

python kmeans聚類畫圖

**Python K-means聚類畫圖**

網(wǎng)站制作、網(wǎng)站設(shè)計(jì)過程中,需要針對(duì)客戶的行業(yè)特點(diǎn)、產(chǎn)品特性、目標(biāo)受眾和市場情況進(jìn)行定位分析,以確定網(wǎng)站的風(fēng)格、色彩、版式、交互等方面的設(shè)計(jì)方向。創(chuàng)新互聯(lián)建站還需要根據(jù)客戶的需求進(jìn)行功能模塊的開發(fā)和設(shè)計(jì),包括內(nèi)容管理、前臺(tái)展示、用戶權(quán)限管理、數(shù)據(jù)統(tǒng)計(jì)和安全保護(hù)等功能。

K-means聚類是一種常用的無監(jiān)督學(xué)習(xí)算法,用于將數(shù)據(jù)集劃分為K個(gè)不同的類別。Python中的Scikit-learn庫提供了一個(gè)方便的K-means聚類算法實(shí)現(xiàn),同時(shí)Matplotlib庫可以用于可視化結(jié)果。本文將介紹如何使用Python進(jìn)行K-means聚類,并展示如何用圖形化方式呈現(xiàn)聚類結(jié)果。

K-means聚類的基本原理是通過迭代計(jì)算,將數(shù)據(jù)集中的樣本點(diǎn)劃分到K個(gè)不同的簇中。算法的步驟如下:

1. 隨機(jī)選擇K個(gè)樣本點(diǎn)作為初始的聚類中心。

2. 計(jì)算每個(gè)樣本點(diǎn)與聚類中心之間的距離,并將樣本點(diǎn)分配到距離最近的聚類中心所在的簇。

3. 更新每個(gè)簇的聚類中心,將聚類中心設(shè)為簇內(nèi)樣本點(diǎn)的均值。

4. 重復(fù)步驟2和步驟3,直到聚類中心不再發(fā)生變化或達(dá)到最大迭代次數(shù)。

在Python中,我們可以使用Scikit-learn庫中的KMeans類來實(shí)現(xiàn)K-means聚類算法。我們需要導(dǎo)入必要的庫:

`python

import numpy as np

import matplotlib.pyplot as plt

from sklearn.cluster import KMeans

接下來,我們需要準(zhǔn)備一個(gè)數(shù)據(jù)集。假設(shè)我們有一個(gè)二維的數(shù)據(jù)集,每個(gè)樣本有兩個(gè)特征。我們可以使用numpy庫生成一個(gè)隨機(jī)的數(shù)據(jù)集:

`python

np.random.seed(0)

X = np.random.randn(100, 2)

現(xiàn)在,我們可以創(chuàng)建一個(gè)K-means聚類對(duì)象,并指定要?jiǎng)澐值拇財(cái)?shù)K:

`python

kmeans = KMeans(n_clusters=3)

然后,我們可以使用fit方法對(duì)數(shù)據(jù)集進(jìn)行聚類:

`python

kmeans.fit(X)

聚類完成后,我們可以通過labels_屬性獲取每個(gè)樣本點(diǎn)所屬的簇:

`python

labels = kmeans.labels_

為了更直觀地展示聚類結(jié)果,我們可以使用Matplotlib庫繪制散點(diǎn)圖。不同的簇可以使用不同的顏色來表示:

`python

plt.scatter(X[:, 0], X[:, 1], c=labels)

plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], marker='x', color='red')

plt.show()

上述代碼中,X[:, 0]表示取數(shù)據(jù)集中所有樣本的第一個(gè)特征,X[:, 1]表示取數(shù)據(jù)集中所有樣本的第二個(gè)特征。c=labels表示根據(jù)聚類結(jié)果為每個(gè)樣本點(diǎn)指定顏色。kmeans.cluster_centers_表示獲取聚類中心的坐標(biāo)。

**問答擴(kuò)展**

1. K-means聚類的優(yōu)點(diǎn)是什么?

K-means聚類的優(yōu)點(diǎn)包括簡單、高效、易于理解和實(shí)現(xiàn)。它是一種基于距離的聚類算法,適用于大規(guī)模數(shù)據(jù)集。K-means聚類還可以用于數(shù)據(jù)預(yù)處理、異常檢測和特征選擇等領(lǐng)域。

2. K-means聚類的缺點(diǎn)是什么?

K-means聚類的缺點(diǎn)包括對(duì)初始聚類中心的敏感性、對(duì)噪聲和離群點(diǎn)的敏感性、只能處理數(shù)值型特征、需要預(yù)先指定簇的數(shù)量等。K-means聚類算法對(duì)于非凸形狀的簇和不同大小的簇效果較差。

3. 如何選擇合適的簇的數(shù)量K?

選擇合適的簇的數(shù)量K是一個(gè)挑戰(zhàn)。常用的方法有肘部法則(Elbow Method)、輪廓系數(shù)(Silhouette Coefficient)和Gap統(tǒng)計(jì)量(Gap Statistic)等。肘部法則通過繪制K值與聚類誤差(即樣本到聚類中心的距離之和)的關(guān)系圖,選擇誤差下降速率明顯減緩的K值。輪廓系數(shù)衡量了聚類結(jié)果的緊密性和分離度,值越接近1表示聚類結(jié)果越好。Gap統(tǒng)計(jì)量通過比較聚類結(jié)果與隨機(jī)數(shù)據(jù)集的差異,選擇Gap值最大的K值。

4. K-means聚類適用于哪些場景?

K-means聚類適用于大規(guī)模數(shù)據(jù)集、數(shù)值型特征、簇具有凸形狀和相似大小的場景。它可以用于市場細(xì)分、圖像分割、文本聚類、推薦系統(tǒng)等領(lǐng)域。

本文介紹了如何使用Python進(jìn)行K-means聚類,并展示了如何用圖形化方式呈現(xiàn)聚類結(jié)果。K-means聚類是一種常用的無監(jiān)督學(xué)習(xí)算法,具有簡單、高效、易于理解和實(shí)現(xiàn)的優(yōu)點(diǎn)。選擇合適的簇的數(shù)量K是一個(gè)挑戰(zhàn),常用的方法有肘部法則、輪廓系數(shù)和Gap統(tǒng)計(jì)量等。K-means聚類適用于大規(guī)模數(shù)據(jù)集、數(shù)值型特征、簇具有凸形狀和相似大小的場景。

網(wǎng)頁題目:python kmeans聚類畫圖
網(wǎng)站地址:http://aaarwkj.com/article12/dgpiogc.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供App開發(fā)、App設(shè)計(jì)外貿(mào)建站、電子商務(wù)、微信公眾號(hào)、企業(yè)建站

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請(qǐng)盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場,如需處理請(qǐng)聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來源: 創(chuàng)新互聯(lián)

外貿(mào)網(wǎng)站制作
青青草免费公开视频久久| 日韩高清不卡免费视频| 韩国午夜福利视频网站| av天堂在线观看网站| 国产精品推荐在线观看| 播放欧美日韩特黄大片| 日日夜夜精品天天综合| 午夜视频在线观看免费高清国产 | 亚洲ve中文字幕久久一区二区| 久久亚洲一本综合久久| 亚洲婷婷久久一区二区| 国产麻豆精品传媒av| 在线观看免费完整观看一区二区 | 在线中文字幕日韩有码| 亚洲av男人电影天堂| 欧美黑人少妇高潮喷水| 色哟国产传媒视频在线观看| 亚洲毛片免费视频久久| 可以免费看的欧美黄片| 极品女神福利视频久久| 欧美三级黄片免费视频| 国产精品白嫩初高中害羞小美女| 国产真实精品对白又爽欧美| 99久久偷拍美女大白屁股| 国产一区二区毛多内射| 亚洲中文字幕一区二区人妻| 亚洲一本一道久久香蕉| 欧美 国产 综合 日韩| 亚洲一区二区三区精品在线| 欧美国产成人精品一区| 久久亚洲一区二区麻豆偷| 精品少妇人妻av蜜桃| 亚洲av一本岛在线播放| 最新91精品国产自产在线| 超碰av之男人的天堂| 99久久成人精品国产片| 国产黄片一区二区在线| 亚洲男人的天堂久久精品| 久久精品亚洲国产成人av | 一区二区三区日本在线观看| 午夜宅男在线视频观看|