這篇文章主要介紹了MongoDB數(shù)據(jù)庫中索引和explain的示例分析,具有一定借鑒價(jià)值,感興趣的朋友可以參考下,希望大家閱讀完這篇文章之后大有收獲,下面讓小編帶著大家一起了解一下。
網(wǎng)站建設(shè)哪家好,找創(chuàng)新互聯(lián)公司!專注于網(wǎng)頁設(shè)計(jì)、網(wǎng)站建設(shè)、微信開發(fā)、重慶小程序開發(fā)、集團(tuán)企業(yè)網(wǎng)站建設(shè)等服務(wù)項(xiàng)目。為回饋新老客戶創(chuàng)新互聯(lián)還提供了克井免費(fèi)建站歡迎大家使用!
mongodb 索引使用
作用
索引通常能夠極大的提高查詢。
索引是一種數(shù)據(jù)結(jié)構(gòu),他搜集一個(gè)集合中文檔特定字段的值。
B-Tree索引來實(shí)現(xiàn)。
創(chuàng)建索引
db.collection.createIndex(keys, options)
keys
keys由文檔字段和索引類型組成。如{"name":1}
key 表示字段 value 1,-1 1表示升序,-1降序
options
options 創(chuàng)建索引的選項(xiàng)。
參數(shù) | 類型 | 描述 |
---|---|---|
background | boolean | 創(chuàng)建索引在后臺運(yùn)行,不會阻止其他對數(shù)據(jù)庫操作 |
unique | boolean | 創(chuàng)建唯一索引,文檔的值不會重復(fù) |
name | string | 索引名稱,默認(rèn)是:字段名_排序類型 開始排序 |
sparse | boolean | 過濾掉null,不存在的字段 |
查看索引
db.collection.getIndexes()
{ "v" : 1, "key" : { "_id" : 1 }, "name" : "_id_", "ns" : "leyue.userdatas" }, { "v" : 1, "key" : { "name" : 1 //索引字段 }, "name" : "name_1", //索引名稱 "ns" : "leyue.userdatas" }
刪除索引
db.collection.dropIndex(index)
刪除指定的索引。
db.collection.dropIndexes()
刪除除了_id 以外的所有索引。
index 是字符串 表示按照索引名稱 name 刪除字段。
index 是{字段名稱:1} 表示按照key 刪除索引。
創(chuàng)建/查看/刪除 示例
查看數(shù)據(jù)
db.userdatas.find() { "_id" : ObjectId("597f357a09c84cf58880e412"), "name" : "u3", "age" : 32 } { "_id" : ObjectId("597f357a09c84cf58880e411"), "name" : "u4", "age" : 30, "score" : [ 7, 4, 2, 0 ] } { "_id" : ObjectId("597fcc0f411f2b2fd30d0b3f"), "age" : 20, "score" : [ 7, 4, 2, 0, 10, 9, 8, 7 ], "name" : "lihao" } { "_id" : ObjectId("597f357a09c84cf58880e413"), "name" : "u2", "age" : 33, "wendang" : { "yw" : 80, "xw" : 90 } } { "_id" : ObjectId("5983f5c88eec53fbcd56a7ca"), "date" : ISODate("2017-08-04T04:19:20.693Z") } { "_id" : ObjectId("597f357a09c84cf58880e40e"), "name" : "u1", "age" : 26, "address" : "中國碭山" } { "_id" : ObjectId("597f357a09c84cf58880e40f"), "name" : "u1", "age" : 37, "score" : [ 10, 203, 12, 43, 56, 22 ] } { "_id" : ObjectId("597f357a09c84cf58880e410"), "name" : "u5", "age" : 78, "address" : "china beijing chaoyang" }
給字段name 創(chuàng)建索引
// 創(chuàng)建索引 db.userdatas.createIndex({"name":1}) { "createdCollectionAutomatically" : false, "numIndexesBefore" : 1, "numIndexesAfter" : 2, "ok" : 1 } // 查看索引 db.userdatas.getIndexes() [ { "v" : 1, "key" : { "_id" : 1 }, "name" : "_id_", "ns" : "leyue.userdatas" }, { "v" : 1, "key" : { "name" : 1 }, "name" : "name_1", "ns" : "leyue.userdatas" } ]
給字段name 創(chuàng)建索引并命名為myindex
db.userdatas.createIndex({"name":1}) db.userdatas.createIndex({"name":1},{"name":"myindex"}) db.userdatas.getIndexes() [ { "v" : 1, "key" : { "_id" : 1 }, "name" : "_id_", "ns" : "leyue.userdatas" }, { "v" : 1, "key" : { "name" : 1 }, "name" : "myindex", "ns" : "leyue.userdatas" } ]
給字段name 創(chuàng)建索引 創(chuàng)建的過程在后臺執(zhí)行
當(dāng)mongodb 集合里面的數(shù)據(jù)過大時(shí) 創(chuàng)建索引很耗時(shí),可以在放在后臺運(yùn)行。
db.userdatas.dropIndex("myindex") db.userdatas.createIndex({"name":1},{"name":"myindex","background":true})
給age 字段創(chuàng)建唯一索引
db.userdatas.createIndex({"age":-1},{"name":"ageIndex","unique":true,"sparse":true}) db.userdatas.getIndexes() [ { "v" : 1, "key" : { "_id" : 1 }, "name" : "_id_", "ns" : "leyue.userdatas" }, { "v" : 1, "key" : { "name" : 1 }, "name" : "myindex", "ns" : "leyue.userdatas", "background" : true }, { "v" : 1, "unique" : true, "key" : { "age" : -1 }, "name" : "ageIndex", "ns" : "leyue.userdatas", "sparse" : true } ] // 插入一個(gè)已存在的age db.userdatas.insert({ "name" : "u8", "age" : 32}) WriteResult({ "nInserted" : 0, "writeError" : { "code" : 11000, "errmsg" : "E11000 duplicate key error index: leyue.userdatas.$ageIndex dup key: { : 32.0 }" } })
創(chuàng)建復(fù)合索引
db.userdatas.createIndex({"name":1,"age":-1}) db.userdatas.getIndexes() [ { "v" : 1, "key" : { "_id" : 1 }, "name" : "_id_", "ns" : "leyue.userdatas" }, { "v" : 1, "key" : { "name" : 1, "age" : -1 }, "name" : "name_1_age_-1", "ns" : "leyue.userdatas" } ]
所有的字段都存在集合 system.indexes 中
db.system.indexes.find() { "v" : 1, "key" : { "_id" : 1 }, "name" : "_id_", "ns" : "leyue.userdatas" } { "v" : 1, "key" : { "_id" : 1 }, "name" : "_id_", "ns" : "leyue.scores" } { "v" : 1, "key" : { "_id" : 1 }, "name" : "_id_", "ns" : "leyue.test" } { "v" : 1, "key" : { "user" : 1, "name" : 1 }, "name" : "myindex", "ns" : "leyue.test" } { "v" : 1, "key" : { "_id" : 1 }, "name" : "_id_", "ns" : "leyue.mycapped" } { "v" : 1, "key" : { "user" : 1 }, "name" : "user_1", "ns" : "leyue.test" } { "v" : 1, "key" : { "name" : 1 }, "name" : "myindex", "ns" : "leyue.userdatas" }
索引總結(jié)
1:創(chuàng)建索引時(shí),1表示按升序存儲,-1表示按降序存儲。
2:可以創(chuàng)建復(fù)合索引,如果想用到復(fù)合索引,必須在查詢條件中包含復(fù)合索引中的前N個(gè)索引列
3: 如果查詢條件中的鍵值順序和復(fù)合索引中的創(chuàng)建順序不一致的話,
MongoDB可以智能的幫助我們調(diào)整該順序,以便使復(fù)合索引可以為查詢所用。
4: 可以為內(nèi)嵌文檔創(chuàng)建索引,其規(guī)則和普通文檔創(chuàng)建索引是一樣的。
5: 一次查詢中只能使用一個(gè)索引,$or特殊,可以在每個(gè)分支條件上使用一個(gè)索引。
6: $where,$exists不能使用索引,還有一些低效率的操作符,比如:$ne,$not,$nin等。
7: 設(shè)計(jì)多個(gè)字段的索引時(shí),應(yīng)該盡量將用于精確匹配的字段放在索引的前面。
explain 使用
語法
db.collection.explain().<method(...)>
explain() 可以設(shè)置參數(shù) :
queryPlanner。
executionStats。
allPlansExecution。
示例
for(var i=0;i<100000;i++) { db.test.insert({"user":"user"+i}); }
沒有使用索引
db.test.explain("executionStats").find({"user":"user200000"}) { "queryPlanner" : { "plannerVersion" : 1, "namespace" : "leyue.test", "indexFilterSet" : false, "parsedQuery" : { "user" : { "$eq" : "user200000" } }, "winningPlan" : { "stage" : "COLLSCAN", "filter" : { "user" : { "$eq" : "user200000" } }, "direction" : "forward" }, "rejectedPlans" : [ ] }, "executionStats" : { "executionSuccess" : true, "nReturned" : 2, "executionTimeMillis" : 326, "totalKeysExamined" : 0, "totalDocsExamined" : 1006497, "executionStages" : { "stage" : "COLLSCAN", "filter" : { "user" : { "$eq" : "user200000" } }, "nReturned" : 2, "executionTimeMillisEstimate" : 270, "works" : 1006499, "advanced" : 2, "needTime" : 1006496, "needYield" : 0, "saveState" : 7863, "restoreState" : 7863, "isEOF" : 1, "invalidates" : 0, "direction" : "forward", "docsExamined" : 1006497 } }, "serverInfo" : { "host" : "lihaodeMacBook-Pro.local", "port" : 27017, "version" : "3.2.1", "gitVersion" : "a14d55980c2cdc565d4704a7e3ad37e4e535c1b2" }, "ok" : 1 }
executionStats.executionTimeMillis: query
的整體查詢時(shí)間。
executionStats.nReturned
: 查詢返回的條目。
executionStats.totalKeysExamined
: 索引掃描條目。
executionStats.totalDocsExamined
: 文檔掃描條目。
executionTimeMillis = 326
query 執(zhí)行時(shí)間
nReturned=2
返回兩條數(shù)據(jù)
totalKeysExamined=0
沒有用到索引
totalDocsExamined 全文檔掃描
理想狀態(tài):
nReturned=totalKeysExamined & totalDocsExamined=0
Stage狀態(tài)分析
stage | 描述 |
---|---|
COLLSCAN | 全表掃描 |
IXSCAN | 掃描索引 |
FETCH | 根據(jù)索引去檢索指定document |
SHARD_MERGE | 將各個(gè)分片返回?cái)?shù)據(jù)進(jìn)行merge |
SORT | 表明在內(nèi)存中進(jìn)行了排序 |
LIMIT | 使用limit限制返回?cái)?shù) |
SKIP | 使用skip進(jìn)行跳過 |
IDHACK | 針對_id進(jìn)行查詢 |
SHARDING_FILTER | 通過mongos對分片數(shù)據(jù)進(jìn)行查詢 |
COUNT | 利用db.coll.explain().count()之類進(jìn)行count運(yùn)算 |
COUNTSCAN | count不使用Index進(jìn)行count時(shí)的stage返回 |
COUNT_SCAN | count使用了Index進(jìn)行count時(shí)的stage返回 |
SUBPLA | 未使用到索引的$or查詢的stage返回 |
TEXT | 使用全文索引進(jìn)行查詢時(shí)候的stage返回 |
PROJECTION | 限定返回字段時(shí)候stage的返回 |
對于普通查詢,我希望看到stage的組合(查詢的時(shí)候盡可能用上索引):
Fetch+IDHACK
Fetch+ixscan
Limit+(Fetch+ixscan)
PROJECTION+ixscan
SHARDING_FITER+ixscan
COUNT_SCAN
不希望看到包含如下的stage:
COLLSCAN(全表掃描),SORT(使用sort但是無index),不合理的SKIP,SUBPLA(未用到index的$or),COUNTSCAN(不使用index進(jìn)行count)
使用索引
db.test.createIndex({"user":1},{"name":"myindex","background":true}) db.test.explain("executionStats").find({"user":"user200000"}) { "queryPlanner" : { "plannerVersion" : 1, "namespace" : "leyue.test", "indexFilterSet" : false, "parsedQuery" : { "user" : { "$eq" : "user200000" } }, "winningPlan" : { "stage" : "FETCH", "inputStage" : { "stage" : "IXSCAN", "keyPattern" : { "user" : 1 }, "indexName" : "myindex", "isMultiKey" : false, "isUnique" : false, "isSparse" : false, "isPartial" : false, "indexVersion" : 1, "direction" : "forward", "indexBounds" : { "user" : [ "[\"user200000\", \"user200000\"]" ] } } }, "rejectedPlans" : [ ] }, "executionStats" : { "executionSuccess" : true, "nReturned" : 2, "executionTimeMillis" : 0, "totalKeysExamined" : 2, "totalDocsExamined" : 2, "executionStages" : { "stage" : "FETCH", "nReturned" : 2, "executionTimeMillisEstimate" : 0, "works" : 3, "advanced" : 2, "needTime" : 0, "needYield" : 0, "saveState" : 0, "restoreState" : 0, "isEOF" : 1, "invalidates" : 0, "docsExamined" : 2, "alreadyHasObj" : 0, "inputStage" : { "stage" : "IXSCAN", "nReturned" : 2, "executionTimeMillisEstimate" : 0, "works" : 3, "advanced" : 2, "needTime" : 0, "needYield" : 0, "saveState" : 0, "restoreState" : 0, "isEOF" : 1, "invalidates" : 0, "keyPattern" : { "user" : 1 }, "indexName" : "myindex", "isMultiKey" : false, "isUnique" : false, "isSparse" : false, "isPartial" : false, "indexVersion" : 1, "direction" : "forward", "indexBounds" : { "user" : [ "[\"user200000\", \"user200000\"]" ] }, "keysExamined" : 2, "dupsTested" : 0, "dupsDropped" : 0, "seenInvalidated" : 0 } } }, "serverInfo" : { "host" : "lihaodeMacBook-Pro.local", "port" : 27017, "version" : "3.2.1", "gitVersion" : "a14d55980c2cdc565d4704a7e3ad37e4e535c1b2" }, "ok" : 1 }
executionTimeMillis: 0
totalKeysExamined: 2
totalDocsExamined:2
nReturned:2
stage:IXSCAN
使用索引和不使用差距很大,合理使用索引,一個(gè)集合適合做 4-5 個(gè)索引。
感謝你能夠認(rèn)真閱讀完這篇文章,希望小編分享的“MongoDB數(shù)據(jù)庫中索引和explain的示例分析”這篇文章對大家有幫助,同時(shí)也希望大家多多支持創(chuàng)新互聯(lián),關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道,更多相關(guān)知識等著你來學(xué)習(xí)!
新聞標(biāo)題:MongoDB數(shù)據(jù)庫中索引和explain的示例分析
文章位置:http://aaarwkj.com/article18/jegidp.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供定制開發(fā)、虛擬主機(jī)、App設(shè)計(jì)、網(wǎng)站排名、電子商務(wù)、云服務(wù)器
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來源: 創(chuàng)新互聯(lián)