欧美一级特黄大片做受成人-亚洲成人一区二区电影-激情熟女一区二区三区-日韩专区欧美专区国产专区

CoherencePartIV:MergingDataAndProcessing

Coherence Part IV: Merging Data And Processing

A lot of people start using Oracle Coherence as a distributed cache because they need to get away from a data-bottlenecking problem. Many of open source NOSQL stores will help you with this problem too (if all you need is to stream large data volumes, being solely in memory is unlikely to be worth the additional hardware cost). However there are some big advantages to being entirely in memory. Distributed execution occurs next to the data it needs to operate on, either on request or as a result of some state change (think trigger), and this is a very powerful tool. This can lead to one of those ‘penny-dropping moment’ as the potential of merging data and processing, particularly in a wholly in-memory architecture, begins to unfold.

成都創(chuàng)新互聯(lián)公司專注于和林格爾網(wǎng)站建設(shè)服務(wù)及定制,我們擁有豐富的企業(yè)做網(wǎng)站經(jīng)驗。 熱誠為您提供和林格爾營銷型網(wǎng)站建設(shè),和林格爾網(wǎng)站制作、和林格爾網(wǎng)頁設(shè)計、和林格爾網(wǎng)站官網(wǎng)定制、小程序定制開發(fā)服務(wù),打造和林格爾網(wǎng)絡(luò)公司原創(chuàng)品牌,更為您提供和林格爾網(wǎng)站排名全網(wǎng)營銷落地服務(wù)。

The benefits or moving computation to data have been around for a very long time – stored procedures being the classic example. The possibilities are extended significantly when the processing space is actually a distributed data grid, with all logic executing in the same language (in this case Java) and with data represented hierarchically (as objects) rather relationally. Suddenly a whole world of fast distributed processing on collocated data opens up.

Interestingly this is one of the main drivers for MapReduce (e.g. Hadoop): deal with very large data sets in a simple (albeit somewhat brute-force) way, collocating data and processing (although in Hadoop’s case it’s disk based) to allow processing to scale to peta- or exabytes. This same pattern can be applied in Coherence but with a slightly different as the goal: extending your application tier to allow real time processing in virtual address space that can grow to terabytes.

There are a couple of points worthy of note before we go on:

  • The process of Merging Data and Processing is not seamless. The details of this are covered in another post. This article is meant solely as an introduction.
  • There are in fact databases with exactly the same benefits, with respect to merging data and processing. VoltDB is closest (solely in memory, Java stored procedures) but there are many other shared nothing DBs that have impressive performance. Exasol and Paraccel are two worthy of note.

Data Affinity: Ensuring Collocation of Disparate Data Sets

Data affinity allows associations to be set up between data in different caches so that the associated data objects in the two different caches are collocated on the same machine. In the example here trade data and market data are linked via the ticker meaning that all trades for ticker ATT will be stored on the same machine as the ATT market data.

Coherence Part IV: Merging Data And Processing

Using Coherence to Run Processing in the Grid

Thus when an Entry Processor or Aggregator executes, say to run a trade pricing routine, it can access the trade and its market data without having to make a wire call as the market data for that particular trade will be held on the same machine (whenever possible).

Coherence Part IV: Merging Data And Processing

This presents the possibility of folding the classic service-centric approach in two[1]. Suddenly compute architectures can be merged into one layer that has responsibility for compute and data.  The fundamental advantage being that far less data needs to be transmitted across the wire.

Increased Wire Efficiency

In a standard architecture (the upper example) data is retrieved from a data source and sent to the application tier for processing. However in the Coherence Application-Centric approach (the lower example) the code is sent to the machine that holds the data for execution. This is one of the real penny-dropping concepts that can revolutionise a systems performance.

But it is important to note that Coherence is not a direct substitute for a compute grid such as DataSynapse. Application-Centric Coherence involves leveraging in the inherent distribution Coherence provides as well as its inherent collocation of processing and data.

Coherence Part IV: Merging Data And Processing

Thus looking at the anatomy of a simple Application-Centric deployment we see:

  • A feed server enters a trade into the Trade cache using an Entry Processor to execute some pre-processing.
  • This in turn fires a CacheStore which reliably executes some domain processing for that trade on the same machine.
  • The domain processing results in the trade being updated in the cache.

This is just one sample pattern, there are many others. Simply using Aggregators (thing MapReduce) distribute work to collocated data on the grid is a powerful pattern in it’s own right.  All these patterns share the ability to collocate domain processing in a Java across a large, distributed address space. This means that not only is the execution collocated with the data but the executions are implicitly load balanced across the Coherence cluster.

Coherence Part IV: Merging Data And Processing

So Coherence has evolved from being a data repository to an application container which provides:

  • Distribution of processing across multiple machines
  • Fault tolerance of data and processing (including async)
  • Scalability to potentially thousands of nodes
  • The ability to collocate data and processing.

An enticing proposition!!!

[1] Service-Centric and Application-Centric are terms coined by Lewis Foti to describe the two broad architectural styles used to build Coherence based systems. Service-Centric architectures use Coherence simply as a data repository. Application-Centric users use Coherence as a framework for building event based distributed systems. Such systems leverage the inherent distribution and fault tolerance that comes with the product with operations being generally collocated with the data they require. This merges the Application and Data layers of the system.

當前題目:CoherencePartIV:MergingDataAndProcessing
URL鏈接:http://aaarwkj.com/article18/jpdodp.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供手機網(wǎng)站建設(shè)、網(wǎng)頁設(shè)計公司、全網(wǎng)營銷推廣、App開發(fā)品牌網(wǎng)站建設(shè)、Google

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)

h5響應(yīng)式網(wǎng)站建設(shè)
欧美福利区免费观看视频| 国产成人精品久久一区二区三区 | 亚洲小说欧美激情另类| 在线高清中文字幕三区| 草莓午夜视频在线观看| 亚洲国产午夜福利在线69| 99久久夜国产精品| 欧美日韩一区二区三区四区在线观看 | 精品欧美自拍偷拍三区| 久久精品夜夜夜夜夜久久| 日本99精品视频10| 久草视频在线免费资源站| 亚洲综合福利视频网站| 久久精品国产一区二区三| 国产亚洲av看码精品永久| 国产av一区二区三区久久| 日韩精品中文女同在线播放| 一区二区三区人妻av| 精品熟女少妇av免费观看| 欧美日韩国产一区在线观看| 最新国产成人免费在线视频| 国产l精品国产亚洲区久久| 国产特级黄色片免费看| 亚洲乱码一区二区三区人妇| 国产日韩亚洲欧美色片| 日韩欧美乱码一区二区| 国产精品一区日韩专区| 一二区中文字幕在线观看| 中文字幕日韩人妻av| 免费看av网站一区二区| 亚洲91精品一区二区三区| 好吊妞视频这里只有精| 亚洲成人精品久久久| 日韩一二卡在线观看视频| 亚洲成av人天堂影院| 国产日韩精品一区二区三区在线| 成人免费视频一区二区三区| 精品国产av一区二区三广区| 日韩欧美一区二区大片| 色婷婷激情一区二区三区| 日本二区三区在线视频|