欧美一级特黄大片做受成人-亚洲成人一区二区电影-激情熟女一区二区三区-日韩专区欧美专区国产专区

nosql的研究與應(yīng)用,nosql數(shù)據(jù)庫的應(yīng)用

NoSQL數(shù)據(jù)庫是否意味著缺乏安全性?

NoSQL薄弱的安全性會給企業(yè)帶來負(fù)面影響 。Imperva公司創(chuàng)始人兼CTO Amichai Shulman如是說。在新的一年中,無疑會有更多企業(yè)開始或籌劃部署NoSQL。方案落實(shí)后就會逐漸發(fā)現(xiàn)種種安全問題,因此早做準(zhǔn)備才是正確的選擇。 作為傳統(tǒng)關(guān)系型數(shù)據(jù)庫的替代方案,NoSQL在查詢中并不使用SQL語言,而且允許用戶隨時變更數(shù)據(jù)屬性。此類數(shù)據(jù)庫以擴(kuò)展性良好著稱,并能夠在需要大量應(yīng)用程序與數(shù)據(jù)庫本身進(jìn)行實(shí)時交互的交易處理任務(wù)中發(fā)揮性能優(yōu)勢,Couchbase創(chuàng)始人兼產(chǎn)品部門高級副總裁James Phillips解釋稱:NoSQL以交易業(yè)務(wù)為核心。它更注重實(shí)時處理能力并且擅長直接對數(shù)據(jù)進(jìn)行操作,大幅度促進(jìn)了交互型軟件系統(tǒng)的發(fā)展。Phillips指出。其中最大的優(yōu)勢之一是能夠隨時改變(在屬性方面),由于結(jié)構(gòu)性的弱化,修改過程非常便捷。 NoSQL最大優(yōu)勢影響其安全性 NoSQL的關(guān)鍵性特色之一是其動態(tài)的數(shù)據(jù)模型,Shulman解釋道。我可以在其運(yùn)作過程中加入新的屬性記錄。因此與這種結(jié)構(gòu)相匹配的安全模型必須具備一定的前瞻性規(guī)劃。也就是說,它必須能夠了解數(shù)據(jù)庫引入的新屬性將引發(fā)哪些改變,以及新加入的屬性擁有哪些權(quán)限。然而這個層面上的安全概念目前尚不存在,根本沒有這樣的解決方案。 根據(jù)Phillips的說法,某些NoSQL開發(fā)商已經(jīng)開始著手研發(fā)安全機(jī)制,至少在嘗試保護(hù)數(shù)據(jù)的完整性。在關(guān)系型數(shù)據(jù)庫領(lǐng)域,如果我們的數(shù)據(jù)組成不正確,那么它將無法與結(jié)構(gòu)并行運(yùn)作,換言之?dāng)?shù)據(jù)插入操作整體將宣告失敗。目前各種驗證規(guī)則與完整性檢查已經(jīng)比較完善,而事實(shí)證明這些驗證機(jī)制都能在NoSQL中發(fā)揮作用。我們與其他人所推出的解決方案類似,都會在插入一條新記錄或是文檔型規(guī)則時觸發(fā),并在執(zhí)行過程中確保插入數(shù)據(jù)的正確性。 Shulman預(yù)計新用戶很快將在配置方面捅出大婁子,這并非因為IT工作人員的玩忽職守,實(shí)際上主要原因是NoSQL作為一項新技術(shù)導(dǎo)致大多數(shù)人對其缺乏足夠的知識基礎(chǔ)。Application Security研發(fā)部門TeamSHATTER的經(jīng)理Alex Rothacker對上述觀點(diǎn)表示贊同。他指出,培訓(xùn)的一大問題在于,大多數(shù)NoSQL的從業(yè)者往往屬于新生代IT人士,他們對于技術(shù)了解較多,但往往缺乏足夠的安全管理經(jīng)驗。 如果他們從傳統(tǒng)關(guān)系型數(shù)據(jù)庫入手,那么由于強(qiáng)制性安全機(jī)制的完備,他們可以在使用中學(xué)習(xí)。但NoSQL,只有行家才能通過觀察得出正確結(jié)論,并在大量研究工作后找到一套完備的安全解決方案。因此可能有90%的從業(yè)者由于知識儲備、安全經(jīng)驗或是工作時間的局限而無法做到這一點(diǎn)。 NoSQL需在安全性方面進(jìn)行優(yōu)化 盡管Phillips認(rèn)同新技術(shù)與舊經(jīng)驗之間存在差異,但企業(yè)在推廣NoSQL時加大對安全性的關(guān)注會起到很大程度的積極作用。他認(rèn)為此類數(shù)據(jù)存儲機(jī)制與傳統(tǒng)關(guān)系類數(shù)據(jù)庫相比,其中包含著的敏感類信息更少,而且與企業(yè)網(wǎng)絡(luò)內(nèi)部其它應(yīng)用程序的接觸機(jī)會也小得多。 他們并不把這項新技術(shù)完全當(dāng)成數(shù)據(jù)庫使用,正如我們在收集整理大量來自其它應(yīng)用程序的業(yè)務(wù)類數(shù)據(jù)時,往往也會考慮將其作為企業(yè)數(shù)據(jù)存儲機(jī)制一樣,他補(bǔ)充道。當(dāng)然,如果我打算研發(fā)一套具備某種特定功能的社交網(wǎng)絡(luò)、社交游戲或是某種特殊web應(yīng)用程序,也很可能會將其部署于防火墻之下。這樣一來它不僅與應(yīng)用程序緊密結(jié)合,也不會被企業(yè)中的其它部門所觸及。 但Rothacker同時表示,這種過度依賴周邊安全機(jī)制的數(shù)據(jù)庫系統(tǒng)也存在著極其危險的漏洞。一旦系統(tǒng)完全依附于周邊安全模型,那么驗證機(jī)制就必須相對薄弱,而且缺乏多用戶管理及數(shù)據(jù)訪問方面的安全保護(hù)。只要擁有高權(quán)限賬戶,我們幾乎能訪問存儲機(jī)制中的一切數(shù)據(jù)。舉例來說,Brian Sullivan就在去年的黑帽大會上演示了如何在完全不清楚數(shù)據(jù)具體內(nèi)容的情況下,將其信息羅列出來甚至導(dǎo)出。 而根據(jù)nCircle公司CTO Tim ‘TK’ Keanini的觀點(diǎn),即使是與有限的應(yīng)用程序相關(guān)聯(lián),NoSQL也很有可能被暴露在互聯(lián)網(wǎng)上。在缺少嚴(yán)密網(wǎng)絡(luò)劃分的情況下,它可能成為攻擊者窺探存儲數(shù)據(jù)的薄弱環(huán)節(jié)。因為NoSQL在設(shè)計上主要用于互聯(lián)網(wǎng)規(guī)模的部署,所以它很可能被直接連接到互聯(lián)網(wǎng)中,進(jìn)而面臨大量攻擊行為。 其中發(fā)生機(jī)率最高的攻擊行為就是注入式攻擊,這也是一直以來肆虐于關(guān)系類數(shù)據(jù)庫領(lǐng)域的頭號公敵。盡管NoSQL沒有將SQL作為查詢語言,也并不代表它能夠免受注入式攻擊的威脅。雖然不少人宣稱SQL注入在NoSQL這邊不起作用,但其中的原理是完全一致的。攻擊者需要做的只是改變自己注入內(nèi)容的語法形式,Rothacker解釋稱。也就是說雖然SQL注入不會出現(xiàn),但JavaScript注入或者JSON注入同樣能威脅安全。 此外,攻擊者在籌劃對這類數(shù)據(jù)庫展開侵襲時,也很可能進(jìn)一步優(yōu)化自己的工具。不成熟的安全技術(shù)往往帶來這樣的窘境:需要花費(fèi)大量時間學(xué)習(xí)如何保障其安全,但幾乎每個IT人士都能迅速掌握攻擊活動的組織方法。因此我認(rèn)為攻擊者將會始終走在安全部署的前面,Shulman說道。遺憾的是搞破壞總比防范工作更容易,而我們已經(jīng)看到不少NoSQL技術(shù)方面的公開漏洞,尤其是目前引起熱議的、以JSON注入為載體的攻擊方式。 NoSQL安全性并非其阻礙 然而,這一切都不應(yīng)該成為企業(yè)使用NoSQL的阻礙,他總結(jié)道。我認(rèn)為歸根結(jié)底,這應(yīng)該算是企業(yè)的一種商業(yè)決策。只要這種選擇能夠帶來吸引力巨大的商業(yè)機(jī)遇,就要承擔(dān)一定風(fēng)險,Shulman解釋道。但應(yīng)該采取一定措施以盡量弱化這種風(fēng)險。 舉例來說,鑒于數(shù)據(jù)庫對外部安全機(jī)制的依賴性,Rothacker建議企業(yè)積極考慮引入加密方案。他警告稱,企業(yè)必須對與NoSQL相對接的應(yīng)用程序代碼仔細(xì)檢查。換言之,企業(yè)必須嚴(yán)格挑選負(fù)責(zé)此類項目部署的人選,確保將最好的人才用于這方面事務(wù),Shulman表示。當(dāng)大家以NoSQL為基礎(chǔ)編寫應(yīng)用程序時,必須啟用有經(jīng)驗的編程人員,因為客戶端軟件是抵擋安全問題的第一道屏障。切實(shí)為額外緩沖區(qū)的部署留出時間與預(yù)算,這能夠讓員工有閑暇反思自己的工作內(nèi)容并盡量多顧及安全考量多想一點(diǎn)就是進(jìn)步。綜上所述,這可能與部署傳統(tǒng)的關(guān)系類數(shù)據(jù)庫也沒什么不同。 具有諷刺意味的是,近年來數(shù)據(jù)庫應(yīng)用程序在安全性方面的提升基本都跟數(shù)據(jù)庫本身沒什么關(guān)系,nCircle公司安全研究及開發(fā)部門總監(jiān)Oliver Lavery如是說。

創(chuàng)新互聯(lián)專注于企業(yè)營銷型網(wǎng)站、網(wǎng)站重做改版、大城網(wǎng)站定制設(shè)計、自適應(yīng)品牌網(wǎng)站建設(shè)、H5響應(yīng)式網(wǎng)站商城網(wǎng)站定制開發(fā)、集團(tuán)公司官網(wǎng)建設(shè)、成都外貿(mào)網(wǎng)站制作、高端網(wǎng)站制作、響應(yīng)式網(wǎng)頁設(shè)計等建站業(yè)務(wù),價格優(yōu)惠性價比高,為大城等各大城市提供網(wǎng)站開發(fā)制作服務(wù)。

大數(shù)據(jù)時代數(shù)據(jù)管理方式研究

大數(shù)據(jù)時代數(shù)據(jù)管理方式研究

1數(shù)據(jù)管理技術(shù)的回顧

數(shù)據(jù)管理技術(shù)主要經(jīng)歷了人工管理階段、文件系統(tǒng)階段和數(shù)據(jù)庫系統(tǒng)階段。隨著數(shù)據(jù)應(yīng)用領(lǐng)域的不斷擴(kuò)展,數(shù)據(jù)管理所處的環(huán)境也越來越復(fù)雜,目前廣泛流行的數(shù)據(jù)庫技術(shù)開始暴露出許多弱點(diǎn),面臨著許多新的挑戰(zhàn)。

1.1 人工管理階段

20 世紀(jì) 50 年代中期,計算機(jī)主要用于科學(xué)計算。當(dāng)時沒有磁盤等直接存取設(shè)備,只有紙帶、卡片、磁帶等外存,也沒有操作系統(tǒng)和管理數(shù)據(jù)的專門軟件。該階段管理的數(shù)據(jù)不保存、由應(yīng)用程序管理數(shù)據(jù)、數(shù)據(jù)不共享和數(shù)據(jù)不具有獨(dú)立性等特點(diǎn)。

1.2 文件系統(tǒng)階段

20 世紀(jì) 50 年代后期到 60 年代中期,隨著計算機(jī)硬件和軟件的發(fā)展,磁盤、磁鼓等直接存取設(shè)備開始普及,這一時期的數(shù)據(jù)處理系統(tǒng)是把計算機(jī)中的數(shù)據(jù)組織成相互獨(dú)立的被命名的數(shù)據(jù)文件,并可按文件的名字來進(jìn)行訪問,對文件中的記錄進(jìn)行存取的數(shù)據(jù)管理技術(shù)。數(shù)據(jù)可以長期保存在計算機(jī)外存上,可以對數(shù)據(jù)進(jìn)行反復(fù)處理,并支持文件的查詢、修改、插入和刪除等操作。其數(shù)據(jù)面向特定的應(yīng)用程序,因此,數(shù)據(jù)共享性、獨(dú)立性差,且冗余度大,管理和維護(hù)的代價也很大。

1.3數(shù)據(jù)庫階段

20 世紀(jì) 60 年代后期以來,計算機(jī)性能得到進(jìn)一步提高,更重要的是出現(xiàn)了大容量磁盤,存儲容量大大增加且價格下降。在此基礎(chǔ)上,才有可能克服文件系統(tǒng)管理數(shù)據(jù)時的不足,而滿足和解決實(shí)際應(yīng)用中多個用戶、多個應(yīng)用程序共享數(shù)據(jù)的要求,從而使數(shù)據(jù)能為盡可能多的應(yīng)用程序服務(wù),這就出現(xiàn)了數(shù)據(jù)庫這樣的數(shù)據(jù)管理技術(shù)。數(shù)據(jù)庫的特點(diǎn)是數(shù)據(jù)不再只針對某一個特定的應(yīng)用,而是面向全組織,具有整體的結(jié)構(gòu)性,共享性高,冗余度減小,具有一定的程序與數(shù)據(jù)之間的獨(dú)立性,并且對數(shù)據(jù)進(jìn)行統(tǒng)一的控制。

2大數(shù)據(jù)時代的數(shù)據(jù)管理技術(shù)

大數(shù)據(jù)(big data),或稱巨量資料,指的是所涉及的資料量規(guī)模巨大到無法透過目前主流軟件工具,在合理時間內(nèi)達(dá)到擷取、管理、處理、并整理成為幫助企業(yè)經(jīng)營決策更積極目的的資訊。大數(shù)據(jù)有 3 個 V,一是大量化(Volume),數(shù)據(jù)量是持續(xù)快速增加的,從 TB級別,躍升到 PB 級別;二是多樣化(Variety),數(shù)據(jù)類型多樣化,結(jié)構(gòu)化數(shù)據(jù)已被視為小菜一碟,圖片、音頻、視頻等非結(jié)構(gòu)化數(shù)據(jù)正以傳統(tǒng)結(jié)構(gòu)化數(shù)據(jù)增長的兩倍速快速創(chuàng)建;三是快速化 (Velocity),數(shù)據(jù)生成速度快,也就需要快速的處理能力,因此,產(chǎn)生了“1 秒定律”,就是說一般要在秒級時間范圍內(nèi)給出分析結(jié)果,時間太長就失去價值了,這個速度要求是大數(shù)據(jù)處理技術(shù)和傳統(tǒng)的數(shù)據(jù)挖掘技術(shù)最大的區(qū)別。

2.1 關(guān)系型數(shù)據(jù)庫(RDBMS)

20 世紀(jì) 70 年代初,IBM 工程師 Codd 發(fā)表了著名的論文“A Relational Model of Data for Large Shared DataBanks”,標(biāo)志著關(guān)系數(shù)據(jù)庫時代來臨。關(guān)系數(shù)據(jù)庫的理論基礎(chǔ)是關(guān)系模型,是借助于集合代數(shù)等數(shù)學(xué)概念和方法來處理數(shù)據(jù)庫中的數(shù)據(jù),現(xiàn)實(shí)世界中的實(shí)體以及實(shí)體之間的聯(lián)系非常容易用關(guān)系模型來表示。容易理解的模型、容易掌握的查詢語言、高效的優(yōu)化器、成熟的技術(shù)和產(chǎn)品,使得關(guān)系數(shù)據(jù)庫占據(jù)了數(shù)據(jù)庫市場的絕對的統(tǒng)治地位。隨著互聯(lián)網(wǎng) web2.0 網(wǎng)站的興起,半結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù)的大量涌現(xiàn),傳統(tǒng)的關(guān)系數(shù)據(jù)庫在應(yīng)付 web2.0 網(wǎng)站特別是超大規(guī)模和高并發(fā)的 SNS(全稱 Social Networking Services,即社會性網(wǎng)絡(luò)服務(wù)) 類型的 web2.0 純動態(tài)網(wǎng)站已經(jīng)顯得力不從心,暴露了很多難以克服的問題。

2.2 noSQL數(shù)據(jù)庫

順應(yīng)時代發(fā)展的需要產(chǎn)生了 noSQL數(shù)據(jù)庫技術(shù),其主要特點(diǎn)是采用與關(guān)系模型不同的數(shù)據(jù)模型,當(dāng)前熱門的 noSQL數(shù)據(jù)庫系統(tǒng)可以說是蓬勃發(fā)展、異軍突起,很多公司都熱情追捧之,如:由 Google 公司提出的 Big Table 和 MapReduce 以及 IBM 公司提出的 Lotus Notes 等。不管是那個公司的 noSQL數(shù)據(jù)庫都圍繞著大數(shù)據(jù)的 3 個 V,目的就是解決大數(shù)據(jù)的 3個 V 問題。因此,在設(shè)計 noSQL 時往往考慮以下幾個原則,首先,采用橫向擴(kuò)展的方式,通過并行處理技術(shù)對數(shù)據(jù)進(jìn)行劃分并進(jìn)行并行處理,以獲得高速的讀寫速度;其次,解決數(shù)據(jù)類型從以結(jié)構(gòu)化數(shù)據(jù)為主轉(zhuǎn)向結(jié)構(gòu)化、半結(jié)構(gòu)化、非結(jié)構(gòu)化三者的融合的問題;再次,放松對數(shù)據(jù)的 ACID 一致性約束,允許數(shù)據(jù)暫時出現(xiàn)不一致的情況,接受最終一致性;最后,對各個分區(qū)數(shù)據(jù)進(jìn)行備份(一般是 3 份),應(yīng)對節(jié)點(diǎn)失敗的狀況等。

對數(shù)據(jù)的應(yīng)用可以分為分析型應(yīng)用和操作型應(yīng)用,分析型應(yīng)用主要是指對大量數(shù)據(jù)進(jìn)行分類、聚集、匯總,最后獲得數(shù)據(jù)量相對小的分析結(jié)果;操作型應(yīng)用主要是指對數(shù)據(jù)進(jìn)行增加、刪除、修改和查詢以及簡單的匯總操作,涉及的數(shù)據(jù)量一般比較少,事務(wù)執(zhí)行時間一般比較短。目前數(shù)據(jù)庫可分為關(guān)系數(shù)據(jù)庫和 noSQL數(shù)據(jù)庫,根據(jù)數(shù)據(jù)應(yīng)用的要求,再結(jié)合目前數(shù)據(jù)庫的種類,所以目前數(shù)據(jù)庫管理方式主要有以下 4 類。

(1)面向操作型的關(guān)系數(shù)據(jù)庫技術(shù)。

首先,傳統(tǒng)數(shù)據(jù)庫廠商提供的基于行存儲的關(guān)系數(shù)據(jù)庫系統(tǒng),如 DB2、Oracle、SQL Server 等,以其高度的一致性、精確性、系統(tǒng)可恢復(fù)性,在事務(wù)處理方面仍然是核心引擎。其次,面向?qū)崟r計算的內(nèi)存數(shù)據(jù)庫系統(tǒng),如 Hana、Timesten、Altibase 等通過把對數(shù)據(jù)并發(fā)控制、查詢和恢復(fù)等操作控制在內(nèi)存內(nèi)部進(jìn)行,所以獲得了非常高的性能,在很多特定領(lǐng)域如電信、證券、網(wǎng)管等得到普遍應(yīng)用。另外,以 VoltDB、Clustrix 和NuoDB 為代表的 new SQL 宣稱能夠在保持 ACDI 特性的同時提高了事務(wù)處理性能 50 倍 ~60 倍。

(2)面向分析型的關(guān)系數(shù)據(jù)庫技術(shù)。

首先,TeraData 是數(shù)據(jù)倉庫領(lǐng)域的領(lǐng)頭羊,Teradata 在整體上是按 Shared Nothing 架構(gòu)體系進(jìn)行組織的,定位就是大型數(shù)據(jù)倉庫系統(tǒng),支持較高的擴(kuò)展性。其次,面向分析型應(yīng)用,列存儲數(shù)據(jù)庫的研究形成了另一個重要的潮流。列存儲數(shù)據(jù)庫以其高效的壓縮、更高的 I/O 效率等特點(diǎn),在分析型應(yīng)用領(lǐng)域獲得了比行存儲數(shù)據(jù)庫高得多的性能。如:MonetDB 和 Vertica是一個典型的基于列存儲技術(shù)的數(shù)據(jù)庫系統(tǒng)。

(3)面向操作型的 noSQL 技術(shù)。

有些操作型應(yīng)用不受 ACID 高度一致性約束,但對大數(shù)據(jù)處理需要處理的數(shù)據(jù)量非常大,對速度性能要求也非常高,這樣就必須依靠大規(guī)模集群的并行處理能力來實(shí)現(xiàn)數(shù)據(jù)處理,弱一致性或最終一致性就可以了。這時,操作型 noSQL數(shù)據(jù)庫的優(yōu)點(diǎn)就可以發(fā)揮的淋漓盡致了。如,Hbase 一天就可以有超過 200 億個到達(dá)硬盤的讀寫操作,實(shí)現(xiàn)對大數(shù)據(jù)的處理。另外,noSQL數(shù)據(jù)庫是一個數(shù)據(jù)模型靈活、支持多樣數(shù)據(jù)類型,如對圖數(shù)據(jù)建模、存儲和分析,其性能、擴(kuò)展性是關(guān)系數(shù)據(jù)庫無法比擬的。

(4)面向分析型的 noSQL 技術(shù)。

面向分析型應(yīng)用的 noSQL 技術(shù)主要依賴于Hadoop 分布式計算平臺,Hadoop 是一個分布式計算平臺,以 HDFS 和 Map Reduce 為用戶提供系統(tǒng)底層細(xì)節(jié)透明的分布式基礎(chǔ)架構(gòu)?!禜adoop 經(jīng)典實(shí)踐染技巧》傳統(tǒng)的數(shù)據(jù)庫廠商 Microsoft,Oracle,SAS,IBM 等紛紛轉(zhuǎn)向 Hadoop 的研究,如微軟公司關(guān)閉 Dryad 系統(tǒng),全力投入 Map Reduce 的研發(fā),Oracle 在 2011 年下半年發(fā)布 Big Plan 戰(zhàn)略計劃,全面進(jìn)軍大數(shù)據(jù)處理領(lǐng)域,IBM 則早已捷足先登“,沃森(Watson)”計算機(jī)就是基于 Hadoop 技術(shù)開發(fā)的產(chǎn)物,同時 IBM 發(fā)布了 BigInsights 計劃,基于 Hadoop,Netezza 和 SPSS(統(tǒng)計分析、數(shù)據(jù)挖掘軟件)等技術(shù)和產(chǎn)品構(gòu)建大數(shù)據(jù)分析處理的技術(shù)框架。同時也涌現(xiàn)出一批新公司來研究Hadoop 技術(shù),如 Cloudera、MapRKarmashpere 等。

3數(shù)據(jù)管理方式的展望

通過以上分析,可以看出關(guān)系數(shù)據(jù)庫的 ACID 強(qiáng)調(diào)數(shù)據(jù)一致性通常指關(guān)聯(lián)數(shù)據(jù)之間的邏輯關(guān)系是否正確和完整,而對于很多互聯(lián)網(wǎng)應(yīng)用來說,對這一致性和隔離性的要求可以降低,而可用性的要求則更為明顯,此時就可以采用 noSQL 的兩種弱一致性的理論 BASE 和 CAP.關(guān)系數(shù)據(jù)庫和 noSQL數(shù)據(jù)庫并不是想到對立的矛盾體,而是可以相互補(bǔ)充的,根據(jù)不同需求使用不同的技術(shù),甚至二者可以共同存在,互不影響。最近幾年,以 Spanner 為代表新型數(shù)據(jù)庫的出現(xiàn),給數(shù)據(jù)庫領(lǐng)域注入新鮮血液,這就是融合了一致性和可用性的 newSQL,這種新型思維方式或許會是未來大數(shù)據(jù)處理方式的發(fā)展方向。

4 結(jié)束語

隨著云計算、物聯(lián)網(wǎng)等的發(fā)展,數(shù)據(jù)呈現(xiàn)爆炸式的增長,人們正被數(shù)據(jù)洪流所包圍,大數(shù)據(jù)的時代已經(jīng)到來。正確利用大數(shù)據(jù)給人們的生活帶來了極大的便利,但與此同時也給傳統(tǒng)的數(shù)據(jù)管理方式帶來了極大的挑戰(zhàn)。

主動數(shù)據(jù)庫的研究主要集中于解決哪些問題

NoSQL太火,冒出太多產(chǎn)品了,保守估計也成百上千了。

互聯(lián)網(wǎng)公司常用的基本集中在以下幾種,每種只舉一個比較常見或者應(yīng)用比較成功的例子吧。

1. In-Memory KV Store : Redis

in memory key-value store,同時提供了更加豐富的數(shù)據(jù)結(jié)構(gòu)和運(yùn)算的能力,成功用法是替代memcached,通過checkpoint和commit log提供了快速的宕機(jī)恢復(fù),同時支持replication提供讀可擴(kuò)展和高可用。

2. Disk-Based KV Store: Leveldb

真正基于磁盤的key-value storage, 模型單一簡單,數(shù)據(jù)量不受限于內(nèi)存大小,數(shù)據(jù)落盤高可靠,Google的幾位大神出品的精品,LSM模型天然寫優(yōu)化,順序?qū)懕P的方式對于新硬件ssd再適合不過了,不足是僅提供了一個庫,需要自己封裝server端。

3. Document Store: Mongodb

分布式nosql,具備了區(qū)別mysql的最大亮點(diǎn):可擴(kuò)展性。mongodb 最新引人的莫過于提供了sql接口,是目前nosql里最像mysql的,只是沒有ACID的特性,發(fā)展很快,支持了索引等特性,上手容易,對于數(shù)據(jù)量遠(yuǎn)超內(nèi)存限制的場景來說,還需要慎重。

4. Column Table Store: HBase

這個富二代似乎不用贅述了,最大的優(yōu)勢是開源,對于普通的scan和基于行的get等基本查詢,性能完全不是問題,只是只提供裸的api,易用性上是短板,可擴(kuò)展性方面是最強(qiáng)的,其次坐上了Hadoop的快車,社區(qū)發(fā)展很快,各種基于其上的開源產(chǎn)品不少,來解決諸如join、聚集運(yùn)算等復(fù)雜查詢。

常見NoSQL數(shù)據(jù)庫的應(yīng)用場景是怎么樣的

文檔數(shù)據(jù)庫

源起:受Lotus Notes啟發(fā)。

數(shù)據(jù)模型:包含了key-value的文檔集合

例子:CouchDB, MongoDB

優(yōu)點(diǎn):數(shù)據(jù)模型自然,編程友好,快速開發(fā),web友好,CRUD。

圖數(shù)據(jù)庫

源起: 歐拉和圖理論。

數(shù)據(jù)模型:節(jié)點(diǎn)和關(guān)系,也可處理鍵值對。

例子:AllegroGraph, InfoGrid, Neo4j

優(yōu)點(diǎn):解決復(fù)雜的圖問題。

關(guān)系數(shù)據(jù)庫

源起: E. F. Codd 在A Relational Model of Data for Large Shared Data Banks提出的

數(shù)據(jù)模型:各種關(guān)系

例子:VoltDB, Clustrix, MySQL

優(yōu)點(diǎn):高性能、可擴(kuò)展的OLTP,支持SQL,物化視圖,支持事務(wù),編程友好。

對象數(shù)據(jù)庫

源起:圖數(shù)據(jù)庫研究

數(shù)據(jù)模型:對象

例子:Objectivity, Gemstone

優(yōu)點(diǎn):復(fù)雜對象模型,快速鍵值訪問,鍵功能訪問,以及圖數(shù)據(jù)庫的優(yōu)點(diǎn)。

Key-Value數(shù)據(jù)庫

源起:Amazon的論文 Dynamo 和 Distributed HashTables。

數(shù)據(jù)模型:鍵值對

例子:Membase, Riak

優(yōu)點(diǎn):處理大量數(shù)據(jù),快速處理大量讀寫請求。編程友好。

BigTable類型數(shù)據(jù)庫

源起:Google的論文 BigTable。

數(shù)據(jù)模型:列簇,每一行在理論上都是不同的

例子:HBase, Hypertable, Cassandra

優(yōu)點(diǎn):處理大量數(shù)據(jù),應(yīng)對極高寫負(fù)載,高可用,支持跨數(shù)據(jù)中心, MapReduce。

數(shù)據(jù)結(jié)構(gòu)服務(wù)

源起: ?

數(shù)據(jù)模型:字典操作,lists, sets和字符串值

例子:Redis

優(yōu)點(diǎn):不同于以前的任何數(shù)據(jù)庫

網(wǎng)格數(shù)據(jù)庫

源起:數(shù)據(jù)網(wǎng)格和元組空間研究。

數(shù)據(jù)模型:基于空間的架構(gòu)

例子:GigaSpaces, Coherence

優(yōu)點(diǎn):適于事務(wù)處理的高性能和高擴(kuò)展性

標(biāo)題名稱:nosql的研究與應(yīng)用,nosql數(shù)據(jù)庫的應(yīng)用
文章URL:http://aaarwkj.com/article22/dssjecc.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供小程序開發(fā)、定制網(wǎng)站品牌網(wǎng)站設(shè)計、網(wǎng)站排名企業(yè)網(wǎng)站制作、Google

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)

成都做網(wǎng)站
欧美久久精品在线观看| 人妻精品久久一区二区三区| 亚洲成人高清在线视频| 亚洲欧美激情专区在线| 韩国成人伦理片在线观看| 日韩电影在线观看二区| 亚洲欧洲日本在线天堂| 日韩新片免费专区在线| 欧美日韩国产一区二区的 | 搡老熟女老女人一区二区| 日韩欧美中文字幕区| 在线不卡日本v二区到六区| 青青草原网址在线观看| 欧美色精品人妻视频在线| 香蕉视频欧美日韩国产| 一起草草视频在线观看| 白浆视频在线免费观看| jk黑丝白丝国产精品| 亚洲精品一品区二品区三| 日本av成人激情视频| 亚洲女人下体毛茸茸视频| 2004年亚洲中文字幕| 日本丝袜福利在线观看| 日日激情综合久久一区| 亚洲超清av在线播放一区二区| 中文字幕在线成人影院| 国产精品亚洲在钱视频| 中文字幕一区二区三区久久| 国产乱肥老妇国产一区二| 97视频在线免费播放| 精品人妻一区二区三区乱码| 日韩中文字幕一二三| 亚洲成色在线综合剧情网站 | 久久日韩一区二区三区| 日本h电影一区二区三区| 亚洲一区二区在线视频在线观看| 亚洲国产精品综合久久久| 黄色录像三级黄色录像三级黄色 | 国产日韩亚洲欧美精品专区| 激情亚洲欧美日韩精品| 亚洲精品中文字幕乱码三区91|