欧美一级特黄大片做受成人-亚洲成人一区二区电影-激情熟女一区二区三区-日韩专区欧美专区国产专区

ldatopicnumber-創(chuàng)新互聯(lián)

Hi Vikas --

the optimum number of topics (K in LDA) is dependent on a at least two factors: 
Firstly, your data set may have an intrinsic number of topics, i.e., may derive 
from some natural clusters that your data have. This number will in the best 
case make your ppx minimal. A non-parametric approach like HDP would ideally 
result in the same K as the one that minimises ppx for LDA.  The second type of 
influence is that of the hyperparameters. If you fix the Dirichlet parameters 
alpha and beta (for LDA's Dirichlet-multinomial "levels" (theta | alpha) and 
(phi | beta)), you bias the optimum K. For instance, larger alpha will force 
more " "decisive" choices of z for each token, leading to a concentration of 
theta to fewer weights, which influences K.

Trouble minimizing perplexity in LDA

up vote1down votefavorite  

I am running LDA from Mark Steyver's MATLAB Topic Modelling toolkit on a few Apache Java open source projects. I have taken care of stop word removal (for e.g. words such Apache, java keywords are marked as stopwords) and tokenization. I find that perplexity on test data always decreases with increasing number of topics. I tried different values of ALPHA but no difference.

成都創(chuàng)新互聯(lián)專注于盤龍企業(yè)網(wǎng)站建設(shè),響應(yīng)式網(wǎng)站開發(fā),商城系統(tǒng)網(wǎng)站開發(fā)。盤龍網(wǎng)站建設(shè)公司,為盤龍等地區(qū)提供建站服務(wù)。全流程專業(yè)公司,專業(yè)設(shè)計(jì),全程項(xiàng)目跟蹤,成都創(chuàng)新互聯(lián)專業(yè)和態(tài)度為您提供的服務(wù)

I need to find optimal number of topics and for that perplexity plot should reach a minimum. Please suggest what may be wrong.

Definition and details regarding calculation of perplexity of a topic model is explained in this post.

Edit: I played with hyperparameters alpha and beta and now perplexity seems to reach a minimum. It is not clear to me as to how these hyperparameters affect perplexity. Initially I was plotting results till 200 topics without any success. Now on the same range minimum is reached at around 50-60 topics (which was my intuition) after modifying hyperparameters. Also, as this postnotes, you bias optimal number of topics according to specific values of hyperparameters.

machine-learning topic-models hyperparameter
shareimprove this question edited Sep 15 '12 at 2:13    asked Sep 14 '12 at 5:22 abhinavkulkarni
2586
1
Many of us probably don't know what perplexity means and what aperplexity plot shows. I know I don't. Could you enlighten me (us)? – Michael Chernick Sep 14 '12 at 15:54
1
@MichaelChernick: I edited post to include a link detailing perplexity of a topic model. – abhinavkulkarni Sep 14 '12 at 22:27
1
Thanks for doing that. – Michael Chernick Sep 14 '12 at 22:52
How many topics have you tried so far (on what size corpus)? Maybe you just haven't yet hit the right number of topics? Also, for inferring the number of topics from data you may want to look into the Hierarchical Dirichlet Process (HDP) with code on David Blei's site: cs.princeton.edu/~blei/topicmodeling.html – Nick Sep 14 '12 at 23:22
@Nick: Indeep HDP, a nonparametric topic modelling algorithm is an alternative to LDA, wherein you don't have to tune hyperparameters. However at this point I would like to stick to LDA and know how and why perplexity behaviour changes drastically with regards to small adjustments in hyperparameters. Also, my corpus size is quite large. For e.g. I have tokenized Apache Lucene source code with ~1800 java files and 367K source code lines. So that's a pretty big corpus I guess. – abhinavkulkarni Sep 15 '12 at 2:21

1 Answer

activeoldestvotes
up vote2down vote

You might want to have a look at the implementation of LDA in Mallet, which can do hyperparameter optimization as part of the training. Mallet also uses asymmetric priors by default, which according to this paper, leads to the model being much more robust against setting the number of topics too high. In practice this means you don't have to specify the hyperparameters, and can set number of topics pretty high without negatively affecting results.

In my experience hyperparameter optimization and asymmetric priors gave significantly better topics than without it, but I haven't tried the Matlab Topic Modelling toolkit.

shareimprove this answer
 

網(wǎng)頁(yè)名稱:ldatopicnumber-創(chuàng)新互聯(lián)
URL標(biāo)題:http://aaarwkj.com/article30/jsiso.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供網(wǎng)頁(yè)設(shè)計(jì)公司、軟件開發(fā)、網(wǎng)站設(shè)計(jì)公司、企業(yè)建站、品牌網(wǎng)站設(shè)計(jì)、ChatGPT

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請(qǐng)盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如需處理請(qǐng)聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來源: 創(chuàng)新互聯(lián)

h5響應(yīng)式網(wǎng)站建設(shè)
97视频在线观看免费| 国产999精品在线观看| 日韩在线中文字幕三区| 亚洲中文无码亚洲人vr在线 | 人妻天天爽夜夜爽欧美色| 亚洲精品一区av在线观看| 午夜影院网站在线看黄| 国产免费不卡午夜福利在线 | 91好色视频在线观看| 日韩人妻有码中文字幕| 超碰国产熟女一区二区三区| 日韩成人在线视频观看| 成人免费在线国产视频| 粉嫩护士国产在线观看| 成人短篇在线视频夫妻刺激自拍| 精品亚洲第一区二区免费在线| 91欧美精品午夜性色福利| 中文字幕在线不卡精品视频| 蜜桃精品视频在线播放| 亚洲国产精品自拍第一页| 欧美日韩亚洲精品久久| 亚洲不卡免费在线视频| 人人澡人人看人人妻| 亚洲av乱码一区二区三区观影| 新午夜福利片在线观看| 日韩一区二区三区视频在线看| 亚洲乱色一区二区三区丝袜| 亚洲华人在线免费视频| 在线播放精品免费不卡| 国产大学生情侣在线视频| 久久精品国产亚洲av热老太| 高清白嫩学生自拍视频| 蜜臀视频网站在线观看| 亚洲伦理国产一国产二| 97免费公开在线观看| 国语对白刺激真实精品| 亚洲永久免费精品一区二区三区| 日本在线看片一区二区| 国产亚洲欧美成人精品久久| 婷婷av一区二区三区| 日产极品一区二区三区|