如何在tensorflow中使用指定gpu?很多新手對此不是很清楚,為了幫助大家解決這個難題,下面小編將為大家詳細講解,有這方面需求的人可以來學(xué)習(xí)下,希望你能有所收獲。
賈汪ssl適用于網(wǎng)站、小程序/APP、API接口等需要進行數(shù)據(jù)傳輸應(yīng)用場景,ssl證書未來市場廣闊!成為創(chuàng)新互聯(lián)的ssl證書銷售渠道,可以享受市場價格4-6折優(yōu)惠!如果有意向歡迎電話聯(lián)系或者加微信:18982081108(備注:SSL證書合作)期待與您的合作!一、指定使用某個顯卡
如果機器中有多塊GPU,tensorflow會默認吃掉所有能用的顯存, 如果實驗室多人公用一臺服務(wù)器,希望指定使用特定某塊GPU。
可以在文件開頭加入如下代碼:
import os os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = "1" # 使用第二塊GPU(從0開始)
也可以制定使用某幾塊GPU
import os os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = "0, 2" # 使用第一, 三塊GPU
禁用GPU
import os os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
支持的設(shè)備
在一套標準系統(tǒng)中通常有多臺計算設(shè)備。TensorFlow 支持 CPU 和 GPU 這兩種設(shè)備。它們均用 strings 表示。例如:
"/cpu:0":機器的 CPU。 "/device:GPU:0":機器的 GPU(如果有一個)。 "/device:GPU:1":機器的第二個 GPU(以此類推)。
如果 TensorFlow 指令中兼有 CPU 和 GPU 實現(xiàn),當該指令分配到設(shè)備時,GPU 設(shè)備有優(yōu)先權(quán)。例如,如果 matmul 同時存在 CPU 和 GPU 核函數(shù),在同時有 cpu:0 和 gpu:0 設(shè)備的系統(tǒng)中,gpu:0 會被選來運行 matmul。
記錄設(shè)備分配方式
要找出您的指令和張量被分配到哪個設(shè)備,請創(chuàng)建會話并將 log_device_placement 配置選項設(shè)為 True。
#Creates a graph. a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a') b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b') c = tf.matmul(a, b) #Creates a session with log_device_placement set to True. sess = tf.Session(config=tf.ConfigProto(log_device_placement=True)) #Runs the op. print(sess.run(c))
應(yīng)該會看到以下輸出內(nèi)容:
Device mapping: /job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: Tesla K40c, pci bus id: 0000:05:00.0 b: /job:localhost/replica:0/task:0/device:GPU:0 a: /job:localhost/replica:0/task:0/device:GPU:0 MatMul: /job:localhost/replica:0/task:0/device:GPU:0 [[ 22. 28.] [ 49. 64.]]
手動分配設(shè)備
如果您希望特定指令在您選擇的設(shè)備(而非系統(tǒng)自動為您選擇的設(shè)備)上運行,您可以使用 with tf.device 創(chuàng)建設(shè)備上下文,這個上下文中的所有指令都將被分配在同一個設(shè)備上運行。
# Creates a graph. with tf.device('/cpu:0'): a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a') b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b') c = tf.matmul(a, b) # Creates a session with log_device_placement set to True. sess = tf.Session(config=tf.ConfigProto(log_device_placement=True)) # Runs the op. print(sess.run(c))
您會看到現(xiàn)在 a 和 b 被分配到 cpu:0。由于未明確指定運行 MatMul 指令的設(shè)備,因此 TensorFlow 運行時將根據(jù)指令和可用設(shè)備(此示例中的 gpu:0)選擇一個設(shè)備,并會根據(jù)要求自動復(fù)制設(shè)備間的張量。
Device mapping: /job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: Tesla K40c, pci bus id: 0000:05:00.0 b: /job:localhost/replica:0/task:0/cpu:0 a: /job:localhost/replica:0/task:0/cpu:0 MatMul: /job:localhost/replica:0/task:0/device:GPU:0 [[ 22. 28.] [ 49. 64.]]
允許增加 GPU 內(nèi)存
默認情況下,TensorFlow 會映射進程可見的所有 GPU 的幾乎所有 GPU 內(nèi)存(取決于 CUDA_VISIBLE_DEVICES)。通過減少內(nèi)存碎片,可以更有效地使用設(shè)備上相對寶貴的 GPU 內(nèi)存資源。
在某些情況下,最理想的是進程只分配可用內(nèi)存的一個子集,或者僅根據(jù)進程需要增加內(nèi)存使用量。 TensorFlow 在 Session 上提供兩個 Config 選項來進行控制。
第一個是 allow_growth 選項,它試圖根據(jù)運行時的需要來分配 GPU 內(nèi)存:它剛開始分配很少的內(nèi)存,隨著 Session 開始運行并需要更多 GPU 內(nèi)存,我們會擴展 TensorFlow 進程所需的 GPU 內(nèi)存區(qū)域。請注意,我們不會釋放內(nèi)存,因為這可能導(dǎo)致出現(xiàn)更嚴重的內(nèi)存碎片情況。要開啟此選項,請通過以下方式在 ConfigProto 中設(shè)置選項:
config = tf.ConfigProto() config.gpu_options.allow_growth = True session = tf.Session(config=config, ...)
第二個是 per_process_gpu_memory_fraction 選項,它可以決定每個可見 GPU 應(yīng)分配到的內(nèi)存占總內(nèi)存量的比例。例如,您可以通過以下方式指定 TensorFlow 僅分配每個 GPU 總內(nèi)存的 40%:
config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.4 session = tf.Session(config=config, ...)
如要真正限制 TensorFlow 進程可使用的 GPU 內(nèi)存量,這非常實用。
在多 GPU 系統(tǒng)中使用單一 GPU
如果您的系統(tǒng)中有多個 GPU,則默認情況下將選擇 ID 最小的 GPU。如果您希望在其他 GPU 上運行,則需要顯式指定偏好設(shè)置:
# Creates a graph. with tf.device('/device:GPU:2'): a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a') b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b') c = tf.matmul(a, b) # Creates a session with log_device_placement set to True. sess = tf.Session(config=tf.ConfigProto(log_device_placement=True)) # Runs the op. print(sess.run(c))
如果您指定的設(shè)備不存在,您會看到 InvalidArgumentError:
InvalidArgumentError: Invalid argument: Cannot assign a device to node 'b': Could not satisfy explicit device specification '/device:GPU:2' [[Node: b = Const[dtype=DT_FLOAT, value=Tensor<type: float shape: [3,2] values: 1 2 3...>, _device="/device:GPU:2"]()]]
當指定設(shè)備不存在時,如果您希望 TensorFlow 自動選擇現(xiàn)有的受支持設(shè)備來運行指令,則可以在創(chuàng)建會話時將配置選項中的 allow_soft_placement 設(shè)為 True。
# Creates a graph. with tf.device('/device:GPU:2'): a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a') b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b') c = tf.matmul(a, b) # Creates a session with allow_soft_placement and log_device_placement set # to True. sess = tf.Session(config=tf.ConfigProto( allow_soft_placement=True, log_device_placement=True)) # Runs the op. print(sess.run(c))
使用多個 GPU
如果您想要在多個 GPU 上運行 TensorFlow,則可以采用多塔式方式構(gòu)建模型,其中每個塔都會分配給不同 GPU。例如:
# Creates a graph. c = [] for d in ['/device:GPU:2', '/device:GPU:3']: with tf.device(d): a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3]) b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2]) c.append(tf.matmul(a, b)) with tf.device('/cpu:0'): sum = tf.add_n(c) # Creates a session with log_device_placement set to True. sess = tf.Session(config=tf.ConfigProto(log_device_placement=True)) # Runs the op. print(sess.run(sum))
您會看到以下輸出內(nèi)容:
Device mapping: /job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: Tesla K20m, pci bus id: 0000:02:00.0 /job:localhost/replica:0/task:0/device:GPU:1 -> device: 1, name: Tesla K20m, pci bus id: 0000:03:00.0 /job:localhost/replica:0/task:0/device:GPU:2 -> device: 2, name: Tesla K20m, pci bus id: 0000:83:00.0 /job:localhost/replica:0/task:0/device:GPU:3 -> device: 3, name: Tesla K20m, pci bus id: 0000:84:00.0 Const_3: /job:localhost/replica:0/task:0/device:GPU:3 Const_2: /job:localhost/replica:0/task:0/device:GPU:3 MatMul_1: /job:localhost/replica:0/task:0/device:GPU:3 Const_1: /job:localhost/replica:0/task:0/device:GPU:2 Const: /job:localhost/replica:0/task:0/device:GPU:2 MatMul: /job:localhost/replica:0/task:0/device:GPU:2 AddN: /job:localhost/replica:0/task:0/cpu:0 [[ 44. 56.] [ 98. 128.]]
看完上述內(nèi)容是否對您有幫助呢?如果還想對相關(guān)知識有進一步的了解或閱讀更多相關(guān)文章,請關(guān)注創(chuàng)新互聯(lián)成都網(wǎng)站設(shè)計公司行業(yè)資訊頻道,感謝您對創(chuàng)新互聯(lián)成都網(wǎng)站設(shè)計公司的支持。
另外有需要云服務(wù)器可以了解下創(chuàng)新互聯(lián)scvps.cn,海內(nèi)外云服務(wù)器15元起步,三天無理由+7*72小時售后在線,公司持有idc許可證,提供“云服務(wù)器、裸金屬服務(wù)器、網(wǎng)站設(shè)計器、香港服務(wù)器、美國服務(wù)器、虛擬主機、免備案服務(wù)器”等云主機租用服務(wù)以及企業(yè)上云的綜合解決方案,具有“安全穩(wěn)定、簡單易用、服務(wù)可用性高、性價比高”等特點與優(yōu)勢,專為企業(yè)上云打造定制,能夠滿足用戶豐富、多元化的應(yīng)用場景需求。
文章標題:如何在tensorflow中使用指定gpu-創(chuàng)新互聯(lián)
鏈接URL:http://aaarwkj.com/article34/cchdpe.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供外貿(mào)網(wǎng)站建設(shè)、做網(wǎng)站、網(wǎng)站導(dǎo)航、網(wǎng)站設(shè)計、網(wǎng)站排名、建站公司
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)