欧美一级特黄大片做受成人-亚洲成人一区二区电影-激情熟女一区二区三区-日韩专区欧美专区国产专区

有哪些難懂的Python庫(kù)

這篇文章主要講解了“有哪些難懂的Python庫(kù)”,文中的講解內(nèi)容簡(jiǎn)單清晰,易于學(xué)習(xí)與理解,下面請(qǐng)大家跟著小編的思路慢慢深入,一起來(lái)研究和學(xué)習(xí)“有哪些難懂的Python庫(kù)”吧!

讓客戶滿意是我們工作的目標(biāo),不斷超越客戶的期望值來(lái)自于我們對(duì)這個(gè)行業(yè)的熱愛(ài)。我們立志把好的技術(shù)通過(guò)有效、簡(jiǎn)單的方式提供給客戶,將通過(guò)不懈努力成為客戶在信息化領(lǐng)域值得信任、有價(jià)值的長(zhǎng)期合作伙伴,公司提供的服務(wù)項(xiàng)目有:域名與空間、網(wǎng)頁(yè)空間、營(yíng)銷軟件、網(wǎng)站建設(shè)、甌海網(wǎng)站維護(hù)、網(wǎng)站推廣。

1. Scrapy

每位數(shù)據(jù)科學(xué)家的項(xiàng)目都是從處理數(shù)據(jù)開(kāi)始的,而互聯(lián)網(wǎng)就是最大、最豐富、最易訪問(wèn)的數(shù)據(jù)庫(kù)。但可惜的是,除了通過(guò)pd.read_html函數(shù)來(lái)獲取數(shù)據(jù)時(shí),一旦涉及從那些數(shù)據(jù)結(jié)構(gòu)復(fù)雜的網(wǎng)站上抓取數(shù)據(jù),數(shù)據(jù)科學(xué)家們大多都會(huì)毫無(wú)頭緒。

Web爬蟲(chóng)常用于分析網(wǎng)站結(jié)構(gòu)和存儲(chǔ)提取信息,但相較于重新構(gòu)建網(wǎng)頁(yè)爬蟲(chóng),Scrapy使這個(gè)過(guò)程變得更加容易。

Scrapy用戶界面非常簡(jiǎn)潔使用感極佳,但其最大優(yōu)勢(shì)還得是效率高。Scrapy可以異步發(fā)送、調(diào)度和處理網(wǎng)站請(qǐng)求,也就是說(shuō):它在花時(shí)間處理和完成一個(gè)請(qǐng)求的同時(shí),也可以發(fā)送另一個(gè)請(qǐng)求。Scrapy通過(guò)同時(shí)向一個(gè)網(wǎng)站發(fā)送多個(gè)請(qǐng)求的方法,使用非??斓呐佬?,以最高效的方式迭代網(wǎng)站內(nèi)容。

除上述優(yōu)點(diǎn)外,Scrapy還能讓數(shù)據(jù)科學(xué)家用不同的格式(如:JSON,CSV或XML)和不同的后端(如:FTP,S3或local)導(dǎo)出存檔數(shù)據(jù)。

有哪些難懂的Python庫(kù)

圖源:unsplash

2. Statsmodels

到底該采用何種統(tǒng)計(jì)建模方法?每位數(shù)據(jù)科學(xué)家都曾對(duì)此猶豫不決,但Statsmodels是其中必須得了解的一個(gè)選項(xiàng),它能實(shí)現(xiàn)Sci-kit  Learn等標(biāo)準(zhǔn)機(jī)器學(xué)習(xí)庫(kù)中沒(méi)有的重要算法(如:ANOVA和ARIMA),而它最有價(jià)值之處在于其細(xì)節(jié)化處理和信息化應(yīng)用。

例如,當(dāng)數(shù)據(jù)科學(xué)家要用Statsmodels算一個(gè)普通最小二乘法時(shí),他所需要的一切信息,不論是有用的度量標(biāo)準(zhǔn),還是關(guān)于系數(shù)的詳細(xì)信息,Statsmodels都能提供。庫(kù)中實(shí)現(xiàn)的其他所有模型也是如此,這些是在Sci-kit  learn中無(wú)法得到的。

OLSRegressionResults ============================================================================== Dep. Variable: Lottery R-squared: 0.348 Model: OLS Adj. R-squared: 0.333 Method: LeastSquares F-statistic: 22.20 Date: Fri, 21Feb2020 Prob (F-statistic): 1.90e-08 Time: 13:59:15 Log-Likelihood: -379.82 No. Observations: 86 AIC: 765.6 DfResiduals: 83 BIC: 773.0 DfModel: 2 CovarianceType: nonrobust =================================================================================== coef std err t P>|t| [0.025 0.975] ----------------------------------------------------------------------------------- Intercept 246.4341 35.233 6.995 0.000 176.358 316.510 Literacy -0.4889 0.128 -3.832 0.000 -0.743 -0.235 np.log(Pop1831) -31.3114 5.977 -5.239 0.000 -43.199 -19.424 ============================================================================== Omnibus: 3.713 Durbin-Watson: 2.019 Prob(Omnibus): 0.156 Jarque-Bera (JB): 3.394 Skew: -0.487 Prob(JB): 0.183 Kurtosis: 3.003 Cond. No. 702. ==============================================================================

對(duì)于數(shù)據(jù)科學(xué)家來(lái)說(shuō),掌握這些信息意義重大,但他們的問(wèn)題是常常太過(guò)信任一個(gè)自己并不真正理解的模型。因?yàn)楦呔S數(shù)據(jù)不夠直觀,所以在部署這些數(shù)據(jù)之前,數(shù)據(jù)科學(xué)家有必要深入了解數(shù)據(jù)與模型。如果盲目追求像準(zhǔn)確度或均方誤差之類的性能指標(biāo),可能會(huì)造成嚴(yán)重的負(fù)面影響。

Statsmodels不僅具有極其詳細(xì)的統(tǒng)計(jì)建模,而且還能提供各種有用的數(shù)據(jù)特性和度量。例如,數(shù)據(jù)科學(xué)家們常會(huì)進(jìn)行時(shí)序分解,它可以幫助他們更好地理解數(shù)據(jù),以及分析何種轉(zhuǎn)換和算法更為合適,或者也可以將pinguoin用于一個(gè)不太復(fù)雜但非常精確的統(tǒng)計(jì)函數(shù)。

有哪些難懂的Python庫(kù)

圖源:Statsmodels

3. Pattern

一些成熟完善的網(wǎng)站用來(lái)檢索數(shù)據(jù)的方法可能更為具體,在這種情況下用Scrapy編寫(xiě)Web爬蟲(chóng)就有點(diǎn)“大材小用”了,而Pattern就是Python中更高級(jí)的Web數(shù)據(jù)挖掘和自然語(yǔ)言處理模塊。

Pattern不僅能無(wú)縫整合谷歌、推特和維基百科三者的數(shù)據(jù),而且還能提供一個(gè)不太個(gè)性化的Web爬蟲(chóng)和HTML  DOM解析器。它采用了詞性標(biāo)注、n-grams搜索、情感分析和WordNet。不論是聚類分析,還是分類處理,又或是網(wǎng)絡(luò)分析可視化,經(jīng)Pattern預(yù)處理后的文本數(shù)據(jù)都可用于各種機(jī)器學(xué)習(xí)算法。

從數(shù)據(jù)檢索到預(yù)處理,再到建模和可視化,Pattern可以處理數(shù)據(jù)科學(xué)流程中的一切問(wèn)題,而且它也能在不同的庫(kù)中快速傳輸數(shù)據(jù)。

有哪些難懂的Python庫(kù)

圖源:unsplash

4. Mlxtend

Mlxtend是一個(gè)任何數(shù)據(jù)科學(xué)項(xiàng)目都可以應(yīng)用的庫(kù)。它可以說(shuō)是Sci-kit learn庫(kù)的擴(kuò)展,能自動(dòng)優(yōu)化常見(jiàn)的數(shù)據(jù)科學(xué)任務(wù):

  • 全自動(dòng)提取與選擇特征。

  • 擴(kuò)展Sci-kit learn庫(kù)現(xiàn)有的數(shù)據(jù)轉(zhuǎn)換器,如中心化處理和事務(wù)編碼器。

  • 大量的評(píng)估指標(biāo):包括偏差方差分解(即測(cè)量模型中的偏差和方差)、特征點(diǎn)檢測(cè)、McNemar測(cè)試、F測(cè)試等。

  • 模型可視化,包括特征邊界、學(xué)習(xí)曲線、PCA交互圈和富集圖繪。

  • 含有許多Sci-kit Learn庫(kù)中沒(méi)有的內(nèi)置數(shù)據(jù)集。

  • 圖像與文本預(yù)處理功能,如名稱泛化器,可以識(shí)別并轉(zhuǎn)換具有不同命名系統(tǒng)的文本(如:它能識(shí)別“Deer,John”,“J.Deer”,“J.D.”和“John  Deer”是相同的)。

Mlxtend還有非常實(shí)用的圖像處理功能,比如它可以提取面部標(biāo)志:

再來(lái)看看它的決策邊界繪制功能:

有哪些難懂的Python庫(kù)

圖源:Mlxtend

5. REP

與Mlxtend一樣,REP也可以被看作是Sci-kit學(xué)習(xí)庫(kù)的擴(kuò)展,但更多的是在機(jī)器學(xué)習(xí)領(lǐng)域。首先,它是一個(gè)統(tǒng)一的Python包裝器,用于從Sci-kit-learn擴(kuò)展而來(lái)的不同機(jī)器學(xué)習(xí)庫(kù)。它可以將Sci-kit  learn與XGBoost、Pybrain、Neurolab等更專業(yè)的機(jī)器學(xué)習(xí)庫(kù)整合在一起。

例如,當(dāng)數(shù)據(jù)科學(xué)家想要通過(guò)一個(gè)簡(jiǎn)單的包裝器將XGBoost分類器轉(zhuǎn)換為Bagging分類器,再將其轉(zhuǎn)換為Sci-kit-learn模型時(shí),只有REP能做到,因?yàn)樵谄渌麕?kù)中無(wú)法找到像這種易于包裝和轉(zhuǎn)換的算法。

from sklearn.ensemble importBaggingClassifier from rep.estimators importXGBoostClassifier, SklearnClassifier clf =BaggingClassifier(base_estimator=XGBoostClassifier(), n_estimators=10) clf =SklearnClassifier(clf)

除此之外,REP還能實(shí)現(xiàn)將模型從任何庫(kù)轉(zhuǎn)換為交叉驗(yàn)證(折疊)和堆疊模型。它有一個(gè)極快的網(wǎng)格搜索功能和模型工廠,可以幫助數(shù)據(jù)科學(xué)家在同一個(gè)數(shù)據(jù)集里有效地使用多個(gè)機(jī)器學(xué)習(xí)分類器。同時(shí)使用REP和Sci-kit  learn,能幫助我們更輕松自如地構(gòu)建模型。

感謝各位的閱讀,以上就是“有哪些難懂的Python庫(kù)”的內(nèi)容了,經(jīng)過(guò)本文的學(xué)習(xí)后,相信大家對(duì)有哪些難懂的Python庫(kù)這一問(wèn)題有了更深刻的體會(huì),具體使用情況還需要大家實(shí)踐驗(yàn)證。這里是創(chuàng)新互聯(lián),小編將為大家推送更多相關(guān)知識(shí)點(diǎn)的文章,歡迎關(guān)注!

文章名稱:有哪些難懂的Python庫(kù)
地址分享:http://aaarwkj.com/article38/ihhisp.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供小程序開(kāi)發(fā)用戶體驗(yàn)、響應(yīng)式網(wǎng)站虛擬主機(jī)、云服務(wù)器、網(wǎng)站排名

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請(qǐng)盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如需處理請(qǐng)聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來(lái)源: 創(chuàng)新互聯(lián)

成都網(wǎng)站建設(shè)公司
黄片大全视频在线免费观看| 国产老熟女高潮一区二区| 日日激情综合久久一区| 日本在线不卡一二三区| 亚洲精品中文字幕码专区| 97青青草免费在线视频| 日本黄色录像在线观看| 国产爆操美女在线观看| 国产精品区一区二区三区| 国产精品日本欧美一区二区| 亚洲日本av一区二区| 国产精品推荐不卡一区| 久久精人妻一区二区三区| 精品人妻一区二区三区乱码| 欧美人妻不卡一区二区久久 | 精品国产91乱码一区二区三区| 国产成人综合久久三区北岛玲 | 日本一二不卡高清在线视频| 国产精品剧情在线播放| 久久婷亚洲综合五月天| 97国产免费全部免费观看| 黄色录像免费看中文字幕| 国产系列在线播放一区二区三区| 亚洲av一区二区三区| 午夜情色视频在线观看| 色久悠悠婷婷综合在线亚洲| 国产内射一级一片高清视频观看| 黄色录像黄色片黄色片| 日本乱一区二区三区在线| 欧美亚洲国产另类第一页| 91日本在线免费观看视频| 97门久欧美日韩久久| 成人精品亚洲一区二区| 内射久久一区二区亚洲| 日本精品国产一区二区在线 | 国产女主播高清在线视频| 亚洲专区综合红桃av| 日本不卡不码高清免费| 激情一区二区三区视频| 亚洲日本一区二区高清在线| 国产精品一区二区三区国产|