這期內容當中小編將會給大家?guī)碛嘘Pgolang中怎么實現slice排序,文章內容豐富且以專業(yè)的角度為大家分析和敘述,閱讀完這篇文章希望大家可以有所收獲。
創(chuàng)新互聯(lián)是專業(yè)的靈璧網站建設公司,靈璧接單;提供做網站、成都網站建設,網頁設計,網站設計,建網站,PHP網站建設等專業(yè)做網站服務;采用PHP框架,可快速的進行靈璧網站開發(fā)網頁制作和功能擴展;專業(yè)做搜索引擎喜愛的網站,專業(yè)的做網站團隊,希望更多企業(yè)前來合作!
1、升序排序
對于 int 、 float64 和 string 數組或是分片的排序, go 分別提供了 sort.Ints()
、 sort.Float64s()
和 sort.Strings()
函數, 默認都是從小到大排序。
package main import ( "fmt" "sort" ) func main() { intList := [] int {2, 4, 3, 5, 7, 6, 9, 8, 1, 0} float8List := [] float64 {4.2, 5.9, 12.3, 10.0, 50.4, 99.9, 31.4, 27.81828, 3.14} stringList := [] string {"a", "c", "b", "d", "f", "i", "z", "x", "w", "y"} sort.Ints(intList) sort.Float64s(float8List) sort.Strings(stringList) fmt.Printf("%v\n%v\n%v\n", intList, float8List, stringList) }
2、降序排序
int 、 float64 和 string 都有默認的升序排序函數, 現在問題是如果降序如何 ? 有其他語言編程經驗的人都知道,只需要交換 cmp 的比較法則就可以了, go 的實現是類似的,然而又有所不同。 go 中對某個 Type 的對象 obj 排序, 可以使用 sort.Sort(obj)
即可,就是需要對 Type 類型綁定三個方法 : Len()
求長度、Less(i,j) 比較第 i 和 第 j 個元素大小的函數、 Swap(i,j)
交換第 i 和第 j 個元素的函數。sort 包下的三個類型 IntSlice 、 Float64Slice 、 StringSlice 分別實現了這三個方法, 對應排序的是 [] int 、 [] float64 和 [] string 。如果期望逆序排序, 只需要將對應的 Less 函數簡單修改一下即可。
go 的 sort 包可以使用 sort.Reverse(slice)
來調換 slice.Interface.Less
,也就是比較函數,所以, int 、 float64 和 string 的逆序排序函數可以這么寫:
package main import ( "fmt" "sort" ) func main() { intList := [] int {2, 4, 3, 5, 7, 6, 9, 8, 1, 0} float8List := [] float64 {4.2, 5.9, 12.3, 10.0, 50.4, 99.9, 31.4, 27.81828, 3.14} stringList := [] string {"a", "c", "b", "d", "f", "i", "z", "x", "w", "y"} sort.Sort(sort.Reverse(sort.IntSlice(intList))) sort.Sort(sort.Reverse(sort.Float64Slice(float8List))) sort.Sort(sort.Reverse(sort.StringSlice(stringList))) fmt.Printf("%v\n%v\n%v\n", intList, float8List, stringList) }
3、深入理解排序
sort 包中有一個 sort.Interface 接口,該接口有三個方法 Len()
、 Less(i,j)
和 Swap(i,j)
。 通用排序函數 sort.Sort 可以排序任何實現了 sort.Inferface
接口的對象(變量)。對于 [] int 、[] float64 和 [] string 除了使用特殊指定的函數外,還可以使用改裝過的類型 IntSclice 、 Float64Slice 和 StringSlice , 然后直接調用它們對應的 Sort()
方法;因為這三種類型也實現了 sort.Interface
接口, 所以可以通過 sort.Reverse
來轉換這三種類型的 Interface.Less
方法來實現逆向排序, 這就是前面最后一個排序的使用。
下面使用了一個自定義(用戶定義)的 Reverse 結構體, 而不是 sort.Reverse
函數, 來實現逆向排序。
package main import ( "fmt" "sort" ) // 自定義的 Reverse 類型 type Reverse struct { sort.Interface // 這樣,Reverse可以接納任何實現了sort.Interface的對象 } // Reverse 只是將其中的 Inferface.Less 的順序對調了一下 func (r Reverse) Less(i, j int) bool { return r.Interface.Less(j, i) } func main() { ints := []int{5, 2, 6, 3, 1, 4} sort.Ints(ints) // 特殊排序函數,升序 fmt.Println("after sort by Ints:\t", ints) doubles := []float64{2.3, 3.2, 6.7, 10.9, 5.4, 1.8} sort.Float64s(doubles) fmt.Println("after sort by Float64s:\t", doubles) // [1.8 2.3 3.2 5.4 6.7 10.9] strings := []string{"hello", "good", "students", "morning", "people", "world"} sort.Strings(strings) fmt.Println("after sort by Strings:\t", strings) // [good hello mornig people students world] ipos := sort.SearchInts(ints, -1) // int 搜索 fmt.Printf("pos of 5 is %d th\n", ipos) dpos := sort.SearchFloat64s(doubles, 20.1) // float64 搜索 fmt.Printf("pos of 5.0 is %d th\n", dpos) fmt.Printf("doubles is asc ? %v\n", sort.Float64sAreSorted(doubles)) doubles = []float64{3.5, 4.2, 8.9, 100.98, 20.14, 79.32} // sort.Sort(sort.Float64Slice(doubles)) // float64 排序方法 2 // fmt.Println("after sort by Sort:\t", doubles) // [3.5 4.2 8.9 20.14 79.32 100.98] (sort.Float64Slice(doubles)).Sort() // float64 排序方法 3 fmt.Println("after sort by Sort:\t", doubles) // [3.5 4.2 8.9 20.14 79.32 100.98] sort.Sort(Reverse{sort.Float64Slice(doubles)}) // float64 逆序排序 fmt.Println("after sort by Reversed Sort:\t", doubles) // [100.98 79.32 20.14 8.9 4.2 3.5] }
sort.Ints
/ sort.Float64s
/ sort.Strings
分別來對整型/浮點型/字符串型slice進行排序。然后是有個測試是否有序的函數。還有分別對應的 search 函數,不過,發(fā)現搜索函數只能定位到如果存在的話的位置,不存在的話,位置是不對的。
關于一般的數組排序,程序中顯示了,有 3 種方法!目前提供的三種類型 int,float64 和 string 呈現對稱的,也就是你有的,對應的我也有。關于翻轉排序或是逆向排序,就是用個翻轉結構體,重寫 Less()
函數即可。
上面的 Reverse 是個通用的結構體。
上面說了那么多, 只是對基本類型進行排序, 該到說說 struct 結構體類型的排序的時候了, 實際中這個用得到的會更多。
結構體類型的排序
結構體類型的排序是通過使用 sort.Sort(slice)
實現的, 只要 slice 實現了 sort.Interface
的三個方法就可以。 雖然這么說,但是排序的方法卻有那么好幾種。首先一種就是模擬排序 [] int 構造對應的 IntSlice 類型,然后對 IntSlice 類型實現 Interface 的三個方法。
1、模擬 IntSlice 排序
package main import ( "fmt" "sort" ) type Person struct { Name string Age int } // 按照 Person.Age 從大到小排序 type PersonSlice [] Person func (a PersonSlice) Len() int { // 重寫 Len() 方法 return len(a) } func (a PersonSlice) Swap(i, j int){ // 重寫 Swap() 方法 a[i], a[j] = a[j], a[i] } func (a PersonSlice) Less(i, j int) bool { // 重寫 Less() 方法, 從大到小排序 return a[j].Age < a[i].Age } func main() { people := [] Person{ {"zhang san", 12}, {"li si", 30}, {"wang wu", 52}, {"zhao liu", 26}, } fmt.Println(people) sort.Sort(PersonSlice(people)) // 按照 Age 的逆序排序 fmt.Println(people) sort.Sort(sort.Reverse(PersonSlice(people))) // 按照 Age 的升序排序 fmt.Println(people) }
這完全是一種模擬的方式,所以如果懂了 IntSlice 自然就理解這里了,反過來,理解了這里那么 IntSlice 那里也就懂了。
這種方法的缺點是:根據 Age 排序需要重新定義 PersonSlice 方法,綁定 Len 、 Less 和 Swap 方法, 如果需要根據 Name 排序, 又需要重新寫三個函數; 如果結構體有 4 個字段,有四種類型的排序,那么就要寫 3 × 4 = 12 個方法, 即使有一些完全是多余的, O__O”… 仔細思量一下,根據不同的標準 Age 或是 Name, 真正不同的體現在 Less 方法上,所以可以將 Less 抽象出來, 每種排序的 Less 讓其變成動態(tài)的,比如下面一種方法。
2、封裝成 Wrapper
package main import ( "fmt" "sort" ) type Person struct { Name string Age int } type PersonWrapper struct { //注意此處 people [] Person by func(p, q * Person) bool } func (pw PersonWrapper) Len() int { // 重寫 Len() 方法 return len(pw.people) } func (pw PersonWrapper) Swap(i, j int){ // 重寫 Swap() 方法 pw.people[i], pw.people[j] = pw.people[j], pw.people[i] } func (pw PersonWrapper) Less(i, j int) bool { // 重寫 Less() 方法 return pw.by(&pw.people[i], &pw.people[j]) } func main() { people := [] Person{ {"zhang san", 12}, {"li si", 30}, {"wang wu", 52}, {"zhao liu", 26}, } fmt.Println(people) sort.Sort(PersonWrapper{people, func (p, q *Person) bool { return q.Age < p.Age // Age 遞減排序 }}) fmt.Println(people) sort.Sort(PersonWrapper{people, func (p, q *Person) bool { return p.Name < q.Name // Name 遞增排序 }}) fmt.Println(people) }
這種方法將 [] Person 和比較的準則 cmp 封裝在了一起,形成了 PersonWrapper 函數,然后在其上綁定 Len 、 Less 和 Swap 方法。 實際上 sort.Sort(pw)
排序的是 pw 中的 people, 這就是前面說的, go 的排序未必就是針對的一個數組或是 slice, 而可以是一個對象中的數組或是 slice 。
3、進一步封裝
感覺方法 2 已經很不錯了, 唯一一個缺點是,在 main 中使用的時候暴露了 sort.Sort 的使用,還有就是 PersonWrapper 的構造。 為了讓 main 中使用起來更為方便, me 們可以再簡單的封裝一下, 構造一個 SortPerson 方法, 如下:
package main import ( "fmt" "sort" ) type Person struct { Name string Age int } type PersonWrapper struct { people [] Person by func(p, q * Person) bool } type SortBy func(p, q *Person) bool func (pw PersonWrapper) Len() int { // 重寫 Len() 方法 return len(pw.people) } func (pw PersonWrapper) Swap(i, j int){ // 重寫 Swap() 方法 pw.people[i], pw.people[j] = pw.people[j], pw.people[i] } func (pw PersonWrapper) Less(i, j int) bool { // 重寫 Less() 方法 return pw.by(&pw.people[i], &pw.people[j]) } // 封裝成 SortPerson 方法 func SortPerson(people [] Person, by SortBy){ sort.Sort(PersonWrapper{people, by}) } func main() { people := [] Person{ {"zhang san", 12}, {"li si", 30}, {"wang wu", 52}, {"zhao liu", 26}, } fmt.Println(people) sort.Sort(PersonWrapper{people, func (p, q *Person) bool { return q.Age < p.Age // Age 遞減排序 }}) fmt.Println(people) SortPerson(people, func (p, q *Person) bool { return p.Name < q.Name // Name 遞增排序 }) fmt.Println(people) }
在方法 2 的基礎上構造了 SortPerson 函數,使用的時候傳過去一個 [] Person 和一個 cmp 函數。
4、另一種思路
package main import ( "fmt" "sort" ) type Person struct { Name string Weight int } type PersonSlice []Person func (s PersonSlice) Len() int { return len(s) } func (s PersonSlice) Swap(i, j int) { s[i], s[j] = s[j], s[i] } type ByName struct{ PersonSlice } // 將 PersonSlice 包裝起來到 ByName 中 func (s ByName) Less(i, j int) bool { return s.PersonSlice[i].Name < s.PersonSlice[j].Name } // 將 Less 綁定到 ByName 上 type ByWeight struct{ PersonSlice } // 將 PersonSlice 包裝起來到 ByWeight 中 func (s ByWeight) Less(i, j int) bool { return s.PersonSlice[i].Weight < s.PersonSlice[j].Weight } // 將 Less 綁定到 ByWeight 上 func main() { s := []Person{ {"apple", 12}, {"pear", 20}, {"banana", 50}, {"orange", 87}, {"hello", 34}, {"world", 43}, } sort.Sort(ByWeight{s}) fmt.Println("People by weight:") printPeople(s) sort.Sort(ByName{s}) fmt.Println("\nPeople by name:") printPeople(s) } func printPeople(s []Person) { for _, o := range s { fmt.Printf("%-8s (%v)\n", o.Name, o.Weight) } }
上述就是小編為大家分享的golang中怎么實現slice排序了,如果剛好有類似的疑惑,不妨參照上述分析進行理解。如果想知道更多相關知識,歡迎關注創(chuàng)新互聯(lián)行業(yè)資訊頻道。
文章標題:golang中怎么實現slice排序
網頁鏈接:http://aaarwkj.com/article4/peijie.html
成都網站建設公司_創(chuàng)新互聯(lián),為您提供全網營銷推廣、軟件開發(fā)、企業(yè)建站、域名注冊、網站排名、網站制作
聲明:本網站發(fā)布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創(chuàng)新互聯(lián)