欧美一级特黄大片做受成人-亚洲成人一区二区电影-激情熟女一区二区三区-日韩专区欧美专区国产专区

使用Python爬了4400條淘寶商品數(shù)據(jù),竟發(fā)現(xiàn)了這些“潛規(guī)則”-創(chuàng)新互聯(lián)

本文記錄了筆者用 Python 爬取淘寶某商品的全過程,并對商品數(shù)據(jù)進(jìn)行了挖掘與分析,最終得出結(jié)論。

目前創(chuàng)新互聯(lián)公司已為上千的企業(yè)提供了網(wǎng)站建設(shè)、域名、網(wǎng)頁空間、網(wǎng)站托管、服務(wù)器托管、企業(yè)網(wǎng)站設(shè)計、富平網(wǎng)站維護(hù)等服務(wù),公司將堅持客戶導(dǎo)向、應(yīng)用為本的策略,正道將秉承"和諧、參與、激情"的文化,與客戶和合作伙伴齊心協(xié)力一起成長,共同發(fā)展。項目內(nèi)容

本案例選擇>> 商品類目:沙發(fā);
數(shù)量:共100頁  4400個商品;
篩選條件:天貓、銷量從高到低、價格500元以上。

項目目的

1. 對商品標(biāo)題進(jìn)行文本分析 詞云可視化
2. 不同關(guān)鍵詞word對應(yīng)的sales的統(tǒng)計分析
3. 商品的價格分布情況分析
4. 商品的銷量分布情況分析
5. 不同價格區(qū)間的商品的平均銷量分布
6. 商品價格對銷量的影響分析
7. 商品價格對銷售額的影響分析
8. 不同省份或城市的商品數(shù)量分布
9.不同省份的商品平均銷量分布


注:本項目僅以以上幾項分析為例。

項目步驟

1. 數(shù)據(jù)采集:Python爬取淘寶網(wǎng)商品數(shù)據(jù)
2. 對數(shù)據(jù)進(jìn)行清洗和處理
3. 文本分析:jieba分詞、wordcloud可視化
4. 數(shù)據(jù)柱形圖可視化 barh
5. 數(shù)據(jù)直方圖可視化 hist
6. 數(shù)據(jù)散點圖可視化 scatter
7. 數(shù)據(jù)回歸分析可視化 regplot

工具&模塊:

工具:本案例代碼編輯工具 Anaconda的Spyder
模塊:requests、retrying、missingno、jieba、matplotlib、wordcloud、imread、seaborn 等。

一、爬取數(shù)據(jù)

因淘寶網(wǎng)是反爬蟲的,雖然使用多線程、修改headers參數(shù),但仍然不能保證每次100%爬取,所以 我增加了循環(huán)爬取,每次循環(huán)爬取未爬取成功的頁 直至所有頁爬取成功停止。
說明:淘寶商品頁為JSON格式 這里使用正則表達(dá)式進(jìn)行解析;


代碼如下:

二、數(shù)據(jù)清洗、處理:

(此步驟也可以在Excel中完成 再讀入數(shù)據(jù))


代碼如下:

使用Python爬了4400條淘寶商品數(shù)據(jù),竟發(fā)現(xiàn)了這些“潛規(guī)則”

使用Python爬了4400條淘寶商品數(shù)據(jù),竟發(fā)現(xiàn)了這些“潛規(guī)則”

說明:根據(jù)需求,本案例中只取了 item_loc, raw_title, view_price, view_sales 這4列數(shù)據(jù),主要對 標(biāo)題、區(qū)域、價格、銷量 進(jìn)行分析。


代碼如下:

三、數(shù)據(jù)挖掘與分析:

【1】. 對 raw_title 列標(biāo)題進(jìn)行文本分析:

使用結(jié)巴分詞器,安裝模塊pip install jieba

對 title_s(list of list 格式)中的每個list的元素(str)進(jìn)行過濾 剔除不需要的詞語,即 把停用詞表stopwords中有的詞語都剔除掉:

因為下面要統(tǒng)計每個詞語的個數(shù),所以 為了準(zhǔn)確性 這里對過濾后的數(shù)據(jù) title_clean 中的每個list的元素進(jìn)行去重,即 每個標(biāo)題被分割后的詞語唯一。

觀察 word_count 表中的詞語,發(fā)現(xiàn)jieba默認(rèn)的詞典 無法滿足需求:
有的詞語(如 可拆洗、不可拆洗等)卻被cut,這里根據(jù)需求對詞典加入新詞(也可以直接在詞典dict.txt里面增刪,然后載入修改過的dict.txt)

詞云可視化:

安裝模塊 wordcloud:
方法1: pip install wordcloud
方法2: 下載Packages安裝:pip install 軟件包名稱
軟件包下載地址:https://www.lfd.uci.edu/~gohlke/pythonlibs/#wordcloud


注意:要把下載的軟件包放在Python安裝路徑下。

代碼如下:

分析結(jié)論:

1. 組合、整裝商品占比很高;

2. 從沙發(fā)材質(zhì)看:布藝沙發(fā)占比很高,比皮藝沙發(fā)多;
3. 從沙發(fā)風(fēng)格看:簡約風(fēng)格最多,北歐風(fēng)次之,其他風(fēng)格排名依次是美式、中式、日式、法式 等;
4. 從戶型看:小戶型占比最高、大小戶型次之,大戶型最少。

【2】. 不同關(guān)鍵詞word對應(yīng)的sales之和的統(tǒng)計分析:

(說明:例如 詞語 ‘簡約',則統(tǒng)計商品標(biāo)題中含有‘簡約'一詞的商品的銷量之和,即求出具有‘簡約'風(fēng)格的商品銷量之和)


代碼如下:

對表df_word_sum 中的 word 和 w_s_sum 兩列數(shù)據(jù)進(jìn)行可視化
(本例中取銷量排名前30的詞語進(jìn)行繪圖)

使用Python爬了4400條淘寶商品數(shù)據(jù),竟發(fā)現(xiàn)了這些“潛規(guī)則”

使用Python爬了4400條淘寶商品數(shù)據(jù),竟發(fā)現(xiàn)了這些“潛規(guī)則”

由圖表可知:

1. 組合商品銷量最高 ;

2. 從品類看:布藝沙發(fā)銷量很高,遠(yuǎn)超過皮藝沙發(fā);
3. 從戶型看:小戶型沙發(fā)銷量最高,大小戶型次之,大戶型銷量最少;
4. 從風(fēng)格看:簡約風(fēng)銷量最高,北歐風(fēng)次之,其他依次是中式、美式、日式等;
5. 可拆洗、轉(zhuǎn)角類沙發(fā)銷量可觀,也是頗受消費者青睞的。

【3】. 商品的價格分布情況分析:

分析發(fā)現(xiàn),有一些值太大,為了使可視化效果更加直觀,這里我們結(jié)合自身產(chǎn)品情況,選擇價格小于20000的商品。


代碼如下:

使用Python爬了4400條淘寶商品數(shù)據(jù),竟發(fā)現(xiàn)了這些“潛規(guī)則”

使用Python爬了4400條淘寶商品數(shù)據(jù),竟發(fā)現(xiàn)了這些“潛規(guī)則”

由圖表可知:

1. 商品數(shù)量隨著價格總體呈現(xiàn)下降階梯形勢,價格越高,在售的商品越少;
2. 低價位商品居多,價格在500-1500之間的商品最多,1500-3000之間的次之,價格1萬以上的商品較少;
3. 價格1萬元以上的商品,在售商品數(shù)量差異不大。

【4】. 商品的銷量分布情況分析:

使用Python爬了4400條淘寶商品數(shù)據(jù),竟發(fā)現(xiàn)了這些“潛規(guī)則”

使用Python爬了4400條淘寶商品數(shù)據(jù),竟發(fā)現(xiàn)了這些“潛規(guī)則”

同樣,為了使可視化效果更加直觀,這里我們選擇銷量大于100的商品。

代碼如下:

由圖表及數(shù)據(jù)可知:

1. 銷量100以上的商品僅占3.4% ,其中銷量100-200之間的商品最多,200-300之間的次之;
2. 銷量100-500之間,商品的數(shù)量隨著銷量呈現(xiàn)下降趨勢,且趨勢陡峭,低銷量商品居多;
3. 銷量500以上的商品很少。

【5】. 不同價格區(qū)間的商品的平均銷量分布:

代碼如下:

使用Python爬了4400條淘寶商品數(shù)據(jù),竟發(fā)現(xiàn)了這些“潛規(guī)則”

使用Python爬了4400條淘寶商品數(shù)據(jù),竟發(fā)現(xiàn)了這些“潛規(guī)則”

由圖表可知:

1. 價格在1331-1680之間的商品平均銷量最高,951-1331之間的次之,9684元以上的最低;
2. 總體呈現(xiàn)先增后減的趨勢,但最高峰處于相對低價位階段;
3. 說明廣大消費者對購買沙發(fā)的需求更多處于低價位階段,在1680元以上 價位越高 平均銷量基本是越少。

【6】. 商品價格對銷量的影響分析:

同上,為了使可視化效果更加直觀,這里我們結(jié)合自身產(chǎn)品情況,選擇價格小于20000的商品。

代碼如下:

使用Python爬了4400條淘寶商品數(shù)據(jù),竟發(fā)現(xiàn)了這些“潛規(guī)則”

使用Python爬了4400條淘寶商品數(shù)據(jù),竟發(fā)現(xiàn)了這些“潛規(guī)則”

由圖表可知:

1. 總體趨勢:隨著商品價格增多 其銷量減少,商品價格對其銷量影響很大;
2. 價格500-2500之間的少數(shù)商品銷量沖的很高,價格2500-5000之間的商品多數(shù)銷量偏低,少數(shù)相對較高,但價格5000以上的商品銷量均很低 沒有銷量突出的商品。

【7】. 商品價格對銷售額的影響分析:

代碼如下:

由圖表可知:

1. 總體趨勢:由線性回歸擬合線可以看出,商品銷售額隨著價格增長呈現(xiàn)上升趨勢;
2. 多數(shù)商品的價格偏低,銷售額也偏低;
3. 價格在0-20000的商品只有少數(shù)銷售額較高,價格2萬-6萬的商品只有3個銷售額較高,價格6-10萬的商品有1個銷售額很高,而且是大值。

【8】. 不同省份的商品數(shù)量分布:

代碼如下:

使用Python爬了4400條淘寶商品數(shù)據(jù),竟發(fā)現(xiàn)了這些“潛規(guī)則”

使用Python爬了4400條淘寶商品數(shù)據(jù),竟發(fā)現(xiàn)了這些“潛規(guī)則”

由圖表可知:

1. 廣東的最多,上海次之,江蘇第三,尤其是廣東的數(shù)量遠(yuǎn)超過江蘇、浙江、上海等地,說明在沙發(fā)這個子類目,廣東的店鋪占主導(dǎo)地位;


2. 江浙滬等地的數(shù)量差異不大,基本相當(dāng)。

【9】. 不同省份的商品平均銷量分布:

代碼如下:

使用Python爬了4400條淘寶商品數(shù)據(jù),竟發(fā)現(xiàn)了這些“潛規(guī)則”

使用Python爬了4400條淘寶商品數(shù)據(jù),竟發(fā)現(xiàn)了這些“潛規(guī)則”

熱力型地圖

總結(jié)

以上所述是小編給大家介紹的使用Python爬了4400條淘寶商品數(shù)據(jù),竟發(fā)現(xiàn)了這些“潛規(guī)則”,希望對大家有所幫助,如果大家有任何疑問請給我留言,小編會及時回復(fù)大家的。在此也非常感謝大家對創(chuàng)新互聯(lián)網(wǎng)站的支持!

新聞標(biāo)題:使用Python爬了4400條淘寶商品數(shù)據(jù),竟發(fā)現(xiàn)了這些“潛規(guī)則”-創(chuàng)新互聯(lián)
本文鏈接:http://aaarwkj.com/article40/ddopho.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供網(wǎng)站策劃、網(wǎng)站導(dǎo)航網(wǎng)站建設(shè)、網(wǎng)站設(shè)計網(wǎng)站制作、手機(jī)網(wǎng)站建設(shè)

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)

外貿(mào)網(wǎng)站建設(shè)
国产精品一区二区三区国产| 蜜臀99久久精品久久久| 国产一区二区三区在线看片| 高清欧美大片免费观看| 欧美一级特黄免费大片| 国产精品久久久久久爽| 中午字幕久久亚洲精品| 国产极品美女在线观看网站| 亚洲最大成人综合福利网| 在线不卡日本v二区到六区| 关于男女性生活的视频| 亚洲精品在线观看日本| 国产一区二区三区本色| 欧美专区另类综合日韩| 丝袜美腿亚洲综合第一区| 亚洲欧美日韩国产亚洲欧美日韩国产| 高颜值紧身牛仔裤国产精品| 99热这里只有精品欧美| av一区二区三区三| 欧美 日韩亚洲一区| 免费搜索国产男女视频| 夫妻过性生活视频播放| 免费av在线观看日韩| 99久久婷婷免费国产综合精品| 新午夜福利片在线观看| 欧美成人精品午夜一区二区| 激情毛片av在线免费看| 日日嗨av特一级黄淫片| 少妇性生活视频免费观看| 国产二区三区在线播放| 岛国毛片在线免费播放| 久久这里只有精品伊人网| 青青草成人公开在线视频| 久久久久亚洲av成人| 蜜臀一区二区三区精品免费| 日本一二不卡高清在线视频| 国产农村妇女一区二区三区| 日韩成人高清免费在线| 久久久久久国产精彩视频| 午夜视频免费看一区二区| 日本区一区二区三高清视频|