欧美一级特黄大片做受成人-亚洲成人一区二区电影-激情熟女一区二区三区-日韩专区欧美专区国产专区

C++如何實(shí)現(xiàn)簡(jiǎn)單BP神經(jīng)網(wǎng)絡(luò)

這篇文章主要講解了C++如何實(shí)現(xiàn)簡(jiǎn)單BP神經(jīng)網(wǎng)絡(luò),內(nèi)容清晰明了,對(duì)此有興趣的小伙伴可以學(xué)習(xí)一下,相信大家閱讀完之后會(huì)有幫助。

創(chuàng)新互聯(lián)公司專(zhuān)注為客戶(hù)提供全方位的互聯(lián)網(wǎng)綜合服務(wù),包含不限于做網(wǎng)站、網(wǎng)站制作、岳陽(yáng)樓網(wǎng)絡(luò)推廣、成都微信小程序、岳陽(yáng)樓網(wǎng)絡(luò)營(yíng)銷(xiāo)、岳陽(yáng)樓企業(yè)策劃、岳陽(yáng)樓品牌公關(guān)、搜索引擎seo、人物專(zhuān)訪(fǎng)、企業(yè)宣傳片、企業(yè)代運(yùn)營(yíng)等,從售前售中售后,我們都將竭誠(chéng)為您服務(wù),您的肯定,是我們最大的嘉獎(jiǎng);創(chuàng)新互聯(lián)公司為所有大學(xué)生創(chuàng)業(yè)者提供岳陽(yáng)樓建站搭建服務(wù),24小時(shí)服務(wù)熱線(xiàn):028-86922220,官方網(wǎng)址:aaarwkj.com

本文實(shí)例為大家分享了C++實(shí)現(xiàn)簡(jiǎn)單BP神經(jīng)網(wǎng)絡(luò)的具體代碼,供大家參考,具體內(nèi)容如下

實(shí)現(xiàn)了一個(gè)簡(jiǎn)單的BP神經(jīng)網(wǎng)絡(luò)

使用EasyX圖形化顯示訓(xùn)練過(guò)程和訓(xùn)練結(jié)果

使用了25個(gè)樣本,一共訓(xùn)練了1萬(wàn)次。

該神經(jīng)網(wǎng)絡(luò)有兩個(gè)輸入,一個(gè)輸出端

下圖是訓(xùn)練效果,data是訓(xùn)練的輸入數(shù)據(jù),temp代表所在層的輸出,target是訓(xùn)練目標(biāo),右邊的大圖是BP神經(jīng)網(wǎng)絡(luò)的測(cè)試結(jié)果。

C++如何實(shí)現(xiàn)簡(jiǎn)單BP神經(jīng)網(wǎng)絡(luò)

以下是詳細(xì)的代碼實(shí)現(xiàn),主要還是基本的矩陣運(yùn)算。

#include <stdio.h>
#include <stdlib.h>
#include <graphics.h>
#include <time.h>
#include <math.h>

#define uint unsigned short
#define real double

#define threshold (real)(rand() % 99998 + 1) / 100000

// 神經(jīng)網(wǎng)絡(luò)的層
class layer{
private:
 char name[20];
 uint row, col;
 uint x, y;
 real **data;
 real *bias;
public:
 layer(){
 strcpy_s(name, "temp");
 row = 1;
 col = 3;
 x = y = 0;
 data = new real*[row];
 bias = new real[row];
 for (uint i = 0; i < row; i++){
  data[i] = new real[col];
  bias[i] = threshold;
  for (uint j = 0; j < col; j++){
  data[i][j] = 1;
  }
 }
 }
 layer(FILE *fp){
 fscanf_s(fp, "%d %d %d %d %s", &row, &col, &x, &y, name);
 data = new real*[row];
 bias = new real[row];
 for (uint i = 0; i < row; i++){
  data[i] = new real[col];
  bias[i] = threshold;
  for (uint j = 0; j < col; j++){
  fscanf_s(fp, "%lf", &data[i][j]);
  }
 }
 }
 layer(uint row, uint col){
 strcpy_s(name, "temp");
 this->row = row;
 this->col = col;
 this->x = 0;
 this->y = 0;
 this->data = new real*[row];
 this->bias = new real[row];
 for (uint i = 0; i < row; i++){
  data[i] = new real[col];
  bias[i] = threshold;
  for (uint j = 0; j < col; j++){
  data[i][j] = 1.0f;
  }
 }
 }
 layer(const layer &a){
 strcpy_s(name, a.name);
 row = a.row, col = a.col;
 x = a.x, y = a.y;
 data = new real*[row];
 bias = new real[row];
 for (uint i = 0; i < row; i++){
  data[i] = new real[col];
  bias[i] = a.bias[i];
  for (uint j = 0; j < col; j++){
  data[i][j] = a.data[i][j];
  }
 }
 }
 ~layer(){
 // 刪除原有數(shù)據(jù)
 for (uint i = 0; i < row; i++){
  delete[]data[i];
 }
 delete[]data;
 }
 layer& operator =(const layer &a){
 // 刪除原有數(shù)據(jù)
 for (uint i = 0; i < row; i++){
  delete[]data[i];
 }
 delete[]data;
 delete[]bias;
 // 重新分配空間
 strcpy_s(name, a.name);
 row = a.row, col = a.col;
 x = a.x, y = a.y;
 data = new real*[row];
 bias = new real[row];
 for (uint i = 0; i < row; i++){
  data[i] = new real[col];
  bias[i] = a.bias[i];
  for (uint j = 0; j < col; j++){
  data[i][j] = a.data[i][j];
  }
 }
 return *this;
 }
 layer Transpose() const {
 layer arr(col, row);
 arr.x = x, arr.y = y;
 for (uint i = 0; i < row; i++){
  for (uint j = 0; j < col; j++){
  arr.data[j][i] = data[i][j];
  }
 }
 return arr;
 }
 layer sigmoid(){
 layer arr(col, row);
 arr.x = x, arr.y = y;
 for (uint i = 0; i < x.row; i++){
  for (uint j = 0; j < x.col; j++){
  arr.data[i][j] = 1 / (1 + exp(-data[i][j]));// 1/(1+exp(-z))
  }
 }
 return arr;
 }
 layer operator *(const layer &b){
 layer arr(row, col);
 arr.x = x, arr.y = y;
 for (uint i = 0; i < row; i++){
  for (uint j = 0; j < col; j++){
  arr.data[i][j] = data[i][j] * b.data[i][j];
  }
 }
 return arr;
 }
 layer operator *(const int b){
 layer arr(row, col);
 arr.x = x, arr.y = y;
 for (uint i = 0; i < row; i++){
  for (uint j = 0; j < col; j++){
  arr.data[i][j] = b * data[i][j];
  }
 }
 return arr;
 }
 layer matmul(const layer &b){
 layer arr(row, b.col);
 arr.x = x, arr.y = y;
 for (uint k = 0; k < b.col; k++){
  for (uint i = 0; i < row; i++){
  arr.bias[i] = bias[i];
  arr.data[i][k] = 0;
  for (uint j = 0; j < col; j++){
   arr.data[i][k] += data[i][j] * b.data[j][k];
  }
  }
 }
 return arr;
 }
 layer operator -(const layer &b){
 layer arr(row, col);
 arr.x = x, arr.y = y;
 for (uint i = 0; i < row; i++){
  for (uint j = 0; j < col; j++){
  arr.data[i][j] = data[i][j] - b.data[i][j];
  }
 }
 return arr;
 }
 layer operator +(const layer &b){
 layer arr(row, col);
 arr.x = x, arr.y = y;
 for (uint i = 0; i < row; i++){
  for (uint j = 0; j < col; j++){
  arr.data[i][j] = data[i][j] + b.data[i][j];
  }
 }
 return arr;
 }
 layer neg(){
 layer arr(row, col);
 arr.x = x, arr.y = y;
 for (uint i = 0; i < row; i++){
  for (uint j = 0; j < col; j++){
  arr.data[i][j] = -data[i][j];
  }
 }
 return arr;
 }
 bool operator ==(const layer &a){
 bool result = true;
 for (uint i = 0; i < row; i++){
  for (uint j = 0; j < col; j++){
  if (abs(data[i][j] - a.data[i][j]) > 10e-6){
   result = false;
   break;
  }
  }
 }
 return result;
 }
 void randomize(){
 for (uint i = 0; i < row; i++){
  for (uint j = 0; j < col; j++){
  data[i][j] = threshold;
  }
  bias[i] = 0.3;
 }
 }
 void print(){
 outtextxy(x, y - 20, name);
 for (uint i = 0; i < row; i++){
  for (uint j = 0; j < col; j++){
  COLORREF color = HSVtoRGB(360 * data[i][j], 1, 1);
  putpixel(x + i, y + j, color);
  }
 }
 }
 void save(FILE *fp){
 fprintf_s(fp, "%d %d %d %d %s\n", row, col, x, y, name);
 for (uint i = 0; i < row; i++){
  for (uint j = 0; j < col; j++){
  fprintf_s(fp, "%lf ", data[i][j]);
  }
  fprintf_s(fp, "\n");
 }
 }
 friend class network;
 friend layer operator *(const double a, const layer &b);
};

layer operator *(const double a, const layer &b){
 layer arr(b.row, b.col);
 arr.x = b.x, arr.y = b.y;
 for (uint i = 0; i < arr.row; i++){
 for (uint j = 0; j < arr.col; j++){
  arr.data[i][j] = a * b.data[i][j];
 }
 }
 return arr;
}

// 神經(jīng)網(wǎng)絡(luò)
class network{
 int iter;
 double learn;
 layer arr[3];
 layer data, target, test;
 layer& unit(layer &x){
 for (uint i = 0; i < x.row; i++){
  for (uint j = 0; j < x.col; j++){
  x.data[i][j] = i == j &#63; 1.0 : 0.0;
  }
 }
 return x;
 }
 layer grad_sigmoid(layer &x){
 layer e(x.row, x.col);
 e = x*(e - x);
 return e;
 }
public:
 network(FILE *fp){
 fscanf_s(fp, "%d %lf", &iter, &learn);
 // 輸入數(shù)據(jù)
 data = layer(fp);
 for (uint i = 0; i < 3; i++){
  arr[i] = layer(fp);
  //arr[i].randomize();
 }
 target = layer(fp);
 // 測(cè)試數(shù)據(jù)
 test = layer(2, 40000);
 for (uint i = 0; i < test.col; i++){
  test.data[0][i] = ((double)i / 200) / 200.0f;
  test.data[1][i] = (double)(i % 200) / 200.0f;
 }
 }
 void train(){
 int i = 0;
 char str[20];
 data.print();
 target.print();
 for (i = 0; i < iter; i++){
  sprintf_s(str, "Iterate:%d", i);
  outtextxy(0, 0, str);
  // 正向傳播
  layer l0 = data;
  layer l1 = arr[0].matmul(l0).sigmoid();
  layer l2 = arr[1].matmul(l1).sigmoid();
  layer l3 = arr[2].matmul(l2).sigmoid();
  // 顯示輸出結(jié)果
  l1.print();
  l2.print();
  l3.print();
  if (l3 == target){
  break;
  }
  // 反向傳播
  layer l3_delta = (l3 - target ) * grad_sigmoid(l3);
  layer l2_delta = arr[2].Transpose().matmul(l3_delta) * grad_sigmoid(l2);
  layer l1_delta = arr[1].Transpose().matmul(l2_delta) * grad_sigmoid(l1);
  // 梯度下降法
  arr[2] = arr[2] - learn * l3_delta.matmul(l2.Transpose());
  arr[1] = arr[1] - learn * l2_delta.matmul(l1.Transpose());
  arr[0] = arr[0] - learn * l1_delta.matmul(l0.Transpose());
 }
 sprintf_s(str, "Iterate:%d", i);
 outtextxy(0, 0, str);
 // 測(cè)試輸出
 // selftest();
 }
 void selftest(){
 // 測(cè)試
 layer l0 = test;
 layer l1 = arr[0].matmul(l0).sigmoid();
 layer l2 = arr[1].matmul(l1).sigmoid();
 layer l3 = arr[2].matmul(l2).sigmoid();
 setlinecolor(WHITE);
 // 測(cè)試?yán)?
 for (uint j = 0; j < test.col; j++){
  COLORREF color = HSVtoRGB(360 * l3.data[0][j], 1, 1);// 輸出顏色
  putpixel((int)(test.data[0][j] * 160) + 400, (int)(test.data[1][j] * 160) + 30, color);
 }
 // 標(biāo)準(zhǔn)例
 for (uint j = 0; j < data.col; j++){
  COLORREF color = HSVtoRGB(360 * target.data[0][j], 1, 1);// 輸出顏色
  setfillcolor(color);
  fillcircle((int)(data.data[0][j] * 160) + 400, (int)(data.data[1][j] * 160) + 30, 3);
 }
 line(400, 30, 400, 230);
 line(400, 30, 600, 30);
 }
 void save(FILE *fp){
 fprintf_s(fp, "%d %lf\n", iter, learn);
 data.save(fp);
 for (uint i = 0; i < 3; i++){
  arr[i].save(fp);
 }
 target.save(fp);
 }
};
#include "network.h"

void main(){
 FILE file;
 FILE *fp = &file;
 // 讀取狀態(tài)
 fopen_s(&fp, "Text.txt", "r");
 network net(fp);
 fclose(fp);
 initgraph(600, 320);
 net.train();
 // 保存狀態(tài)
 fopen_s(&fp, "Text.txt", "w");
 net.save(fp);
 fclose(fp);
 getchar();
 closegraph();
}

看完上述內(nèi)容,是不是對(duì)C++如何實(shí)現(xiàn)簡(jiǎn)單BP神經(jīng)網(wǎng)絡(luò)有進(jìn)一步的了解,如果還想學(xué)習(xí)更多內(nèi)容,歡迎關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道。

網(wǎng)站欄目:C++如何實(shí)現(xiàn)簡(jiǎn)單BP神經(jīng)網(wǎng)絡(luò)
文章位置:http://aaarwkj.com/article40/pjcgeo.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供定制開(kāi)發(fā)虛擬主機(jī)、移動(dòng)網(wǎng)站建設(shè)、企業(yè)網(wǎng)站制作企業(yè)建站、手機(jī)網(wǎng)站建設(shè)

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶(hù)投稿、用戶(hù)轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請(qǐng)盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如需處理請(qǐng)聯(lián)系客服。電話(huà):028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來(lái)源: 創(chuàng)新互聯(lián)

外貿(mào)網(wǎng)站建設(shè)
美女诱惑福利视频久久久| 亚洲伊人久久一区二区| 未满十八禁止免费在线观看| 国产成人精品久久久亚洲| 亚洲av成人噜噜网站| 天美传媒剧国产在线观看| 亚洲欧美日韩另类精品一区二区三区 | 亚洲中文字幕乱码第一页| 精品一区二区三区亚洲| 中午字幕久久亚洲精品| 麻豆一精品传二传媒短视频| 一二区中文字幕在线观看| 人人妻人人澡人人爽的视频| 一区二区在线视频免费播放 | 五月婷婷丁香在线观看| 久久久精品国产亚洲av色哟哟| 哪里可以看黄色片日韩| 亚洲欧美日韩成人在线| 久久精品少妇人妻视频| 午夜在线观看成人av| 扒开女性毛茸茸的视频| 国产极品嫩模91精品| 色久悠悠婷婷综合在线亚洲| 人人看男人的天堂东京| 国内久久婷婷综合五月趴| 真人国产一级美女免费视频| 色哟哟视频在线免费观看| 熟妇一区二区三区av| 熟女俱乐部五十路六十路| 久久人妻蜜桃一区二区三区| 日韩夫妻精品熟妇人妻一区| 色婷婷一区二区三区网站| 91欧美视频在线观看| 一区二区三区日韩电影在线| 亚洲av资源一区二区| 国产成人免费视频大全| 蜜臀视频一区二区在线播放| 日本一区二区高清在线观看| 亚洲综合一区二区精品久久| 国产亚洲av看码精品永久| 欧美高清一区二区在线播放|