欧美一级特黄大片做受成人-亚洲成人一区二区电影-激情熟女一区二区三区-日韩专区欧美专区国产专区

哪個服務(wù)提供nosql,相關(guān)服務(wù)有哪些

選擇NoSQL的幾種理由

1.Scalability

創(chuàng)新互聯(lián)專注于大柴旦企業(yè)網(wǎng)站建設(shè),成都響應(yīng)式網(wǎng)站建設(shè),商城系統(tǒng)網(wǎng)站開發(fā)。大柴旦網(wǎng)站建設(shè)公司,為大柴旦等地區(qū)提供建站服務(wù)。全流程按需網(wǎng)站開發(fā),專業(yè)設(shè)計(jì),全程項(xiàng)目跟蹤,創(chuàng)新互聯(lián)專業(yè)和態(tài)度為您提供的服務(wù)

有兩種理由尋求一種分布式數(shù)據(jù)庫:

1)支持多個數(shù)據(jù)中心

2)可以透明在線為你的應(yīng)用增加新服務(wù)器。

非分布式的NoSQL數(shù)據(jù)庫包括有 CouchDB, MongoDB, Neo4j, Redis, and Tokyo Cabinet.

當(dāng)然他們可以為分布式的持久層架構(gòu)服務(wù),MongoDB 提供有限的劃分碎片sharding支持, 正如 CouchDB分離的Lounge項(xiàng)目一樣, Tokyo

Cabinet能用于作為Voldemort存儲引擎.

2.Data and Query Model

NoSQL 支持各種數(shù)據(jù)類型數(shù)據(jù)模型,圖片 視頻 等等

什么是云存儲?什么是nosql

云存儲是在云計(jì)算(cloud computing)概念上延伸和衍生發(fā)展出來的一個新的概念。[1] 云計(jì)算是分布式處理(Distributed Computing)、并行處理(Parallel Computing)和網(wǎng)格計(jì)算(Grid Computing)的發(fā)展,是透過網(wǎng)絡(luò)將龐大的計(jì)算處理程序自動分拆成無數(shù)個較小的子程序,再交由多部服務(wù)器所組成的龐大系統(tǒng)經(jīng)計(jì)算分析之后將處理結(jié)果回傳給用戶。通過云計(jì)算技術(shù),網(wǎng)絡(luò)服務(wù)提供者可以在數(shù)秒之內(nèi),處理數(shù)以千萬計(jì)甚至億計(jì)的信息,達(dá)到和”超級計(jì)算機(jī)”同樣強(qiáng)大的網(wǎng)絡(luò)服務(wù)。

NoSQL,泛指非關(guān)系型的數(shù)據(jù)庫。隨著互聯(lián)網(wǎng)web2.0網(wǎng)站的興起,傳統(tǒng)的關(guān)系數(shù)據(jù)庫在應(yīng)付web2.0網(wǎng)站,特別是超大規(guī)模和高并發(fā)的SNS類型的web2.0純動態(tài)網(wǎng)站已經(jīng)顯得力不從心,暴露了很多難以克服的問題,而非關(guān)系型的數(shù)據(jù)庫則由于其本身的特點(diǎn)得到了非常迅速的發(fā)展。NoSQL數(shù)據(jù)庫的產(chǎn)生就是為了解決大規(guī)模數(shù)據(jù)集合多重?cái)?shù)據(jù)種類帶來的挑戰(zhàn),尤其是大數(shù)據(jù)應(yīng)用難題。

一、NoSQL數(shù)據(jù)庫簡介

Web1.0的時代,數(shù)據(jù)訪問量很有限,用一夫當(dāng)關(guān)的高性能的單點(diǎn)服務(wù)器可以解決大部分問題。

隨著Web2.0的時代的到來,用戶訪問量大幅度提升,同時產(chǎn)生了大量的用戶數(shù)據(jù)。加上后來的智能移動設(shè)備的普及,所有的互聯(lián)網(wǎng)平臺都面臨了巨大的性能挑戰(zhàn)。

NoSQL(NoSQL = Not Only SQL ),意即“不僅僅是SQL”,泛指非關(guān)系型的數(shù)據(jù)庫。

NoSQL 不依賴業(yè)務(wù)邏輯方式存儲,而以簡單的key-value模式存儲。因此大大的增加了數(shù)據(jù)庫的擴(kuò)展能力。

Memcache Memcache Redis Redis MongoDB MongoDB 列式數(shù)據(jù)庫 列式數(shù)據(jù)庫 Hbase Hbase

HBase是Hadoop項(xiàng)目中的數(shù)據(jù)庫。它用于需要對大量的數(shù)據(jù)進(jìn)行隨機(jī)、實(shí)時的讀寫操作的場景中。

HBase的目標(biāo)就是處理數(shù)據(jù)量非常龐大的表,可以用普通的計(jì)算機(jī)處理超過10億行數(shù)據(jù),還可處理有數(shù)百萬列元素的數(shù)據(jù)表。

Cassandra Cassandra

Apache Cassandra是一款免費(fèi)的開源NoSQL數(shù)據(jù)庫,其設(shè)計(jì)目的在于管理由大量商用服務(wù)器構(gòu)建起來的龐大集群上的海量數(shù)據(jù)集(數(shù)據(jù)量通常達(dá)到PB級別)。在眾多顯著特性當(dāng)中,Cassandra最為卓越的長處是對寫入及讀取操作進(jìn)行規(guī)模調(diào)整,而且其不強(qiáng)調(diào)主集群的設(shè)計(jì)思路能夠以相對直觀的方式簡化各集群的創(chuàng)建與擴(kuò)展流程。

主要應(yīng)用:社會關(guān)系,公共交通網(wǎng)絡(luò),地圖及網(wǎng)絡(luò)拓譜(n*(n-1)/2)

目前哪些NoSQL數(shù)據(jù)庫應(yīng)用廣泛,各有什么特點(diǎn)

特點(diǎn):

它們可以處理超大量的數(shù)據(jù)。

它們運(yùn)行在便宜的PC服務(wù)器集群上。

PC集群擴(kuò)充起來非常方便并且成本很低,避免了“sharding”操作的復(fù)雜性和成本。

它們擊碎了性能瓶頸。

NoSQL的支持者稱,通過NoSQL架構(gòu)可以省去將Web或Java應(yīng)用和數(shù)據(jù)轉(zhuǎn)換成SQL友好格式的時間,執(zhí)行速度變得更快。

“SQL并非適用于所有的程序代碼,” 對于那些繁重的重復(fù)操作的數(shù)據(jù),SQL值得花錢。但是當(dāng)數(shù)據(jù)庫結(jié)構(gòu)非常簡單時,SQL可能沒有太大用處。

沒有過多的操作。

雖然NoSQL的支持者也承認(rèn)關(guān)系數(shù)據(jù)庫提供了無可比擬的功能集合,而且在數(shù)據(jù)完整性上也發(fā)揮絕對穩(wěn)定,他們同時也表示,企業(yè)的具體需求可能沒有那么多。

Bootstrap支持

因?yàn)镹oSQL項(xiàng)目都是開源的,因此它們?nèi)狈?yīng)商提供的正式支持。這一點(diǎn)它們與大多數(shù)開源項(xiàng)目一樣,不得不從社區(qū)中尋求支持。

優(yōu)點(diǎn):

易擴(kuò)展

NoSQL數(shù)據(jù)庫種類繁多,但是一個共同的特點(diǎn)都是去掉關(guān)系數(shù)據(jù)庫的關(guān)系型特性。數(shù)據(jù)之間無關(guān)系,這樣就非常容易擴(kuò)展。也無形之間,在架構(gòu)的層面上帶來了可擴(kuò)展的能力。

大數(shù)據(jù)量,高性能

NoSQL數(shù)據(jù)庫都具有非常高的讀寫性能,尤其在大數(shù)據(jù)量下,同樣表現(xiàn)優(yōu)秀。這得益于它的無關(guān)系性,數(shù)據(jù)庫的結(jié)構(gòu)簡單。一般MySQL使用 Query Cache,每次表的更新Cache就失效,是一種大粒度的Cache,在針對web2.0的交互頻繁的應(yīng)用,Cache性能不高。而NoSQL的 Cache是記錄級的,是一種細(xì)粒度的Cache,所以NoSQL在這個層面上來說就要性能高很多了。

靈活的數(shù)據(jù)模型

NoSQL無需事先為要存儲的數(shù)據(jù)建立字段,隨時可以存儲自定義的數(shù)據(jù)格式。而在關(guān)系數(shù)據(jù)庫里,增刪字段是一件非常麻煩的事情。如果是非常大數(shù)據(jù)量的表,增加字段簡直就是一個噩夢。這點(diǎn)在大數(shù)據(jù)量的web2.0時代尤其明顯。

高可用

NoSQL在不太影響性能的情況,就可以方便的實(shí)現(xiàn)高可用的架構(gòu)。比如Cassandra,HBase模型,通過復(fù)制模型也能實(shí)現(xiàn)高可用。

主要應(yīng)用:

Apache HBase

這個大數(shù)據(jù)管理平臺建立在谷歌強(qiáng)大的BigTable管理引擎基礎(chǔ)上。作為具有開源、Java編碼、分布式多個優(yōu)勢的數(shù)據(jù)庫,Hbase最初被設(shè)計(jì)應(yīng)用于Hadoop平臺,而這一強(qiáng)大的數(shù)據(jù)管理工具,也被Facebook采用,用于管理消息平臺的龐大數(shù)據(jù)。

Apache Storm

用于處理高速、大型數(shù)據(jù)流的分布式實(shí)時計(jì)算系統(tǒng)。Storm為Apache Hadoop添加了可靠的實(shí)時數(shù)據(jù)處理功能,同時還增加了低延遲的儀表板、安全警報,改進(jìn)了原有的操作方式,幫助企業(yè)更有效率地捕獲商業(yè)機(jī)會、發(fā)展新業(yè)務(wù)。

Apache Spark

該技術(shù)采用內(nèi)存計(jì)算,從多迭代批量處理出發(fā),允許將數(shù)據(jù)載入內(nèi)存做反復(fù)查詢,此外還融合數(shù)據(jù)倉庫、流處理和圖計(jì)算等多種計(jì)算范式,Spark用Scala語言實(shí)現(xiàn),構(gòu)建在HDFS上,能與Hadoop很好的結(jié)合,而且運(yùn)行速度比MapReduce快100倍。

Apache Hadoop

該技術(shù)迅速成為了大數(shù)據(jù)管理標(biāo)準(zhǔn)之一。當(dāng)它被用來管理大型數(shù)據(jù)集時,對于復(fù)雜的分布式應(yīng)用,Hadoop體現(xiàn)出了非常好的性能,平臺的靈活性使它可以運(yùn)行在商用硬件系統(tǒng),它還可以輕松地集成結(jié)構(gòu)化、半結(jié)構(gòu)化和甚至非結(jié)構(gòu)化數(shù)據(jù)集。

Apache Drill

你有多大的數(shù)據(jù)集?其實(shí)無論你有多大的數(shù)據(jù)集,Drill都能輕松應(yīng)對。通過支持HBase、Cassandra和MongoDB,Drill建立了交互式分析平臺,允許大規(guī)模數(shù)據(jù)吞吐,而且能很快得出結(jié)果。

Apache Sqoop

也許你的數(shù)據(jù)現(xiàn)在還被鎖定于舊系統(tǒng)中,Sqoop可以幫你解決這個問題。這一平臺采用并發(fā)連接,可以將數(shù)據(jù)從關(guān)系數(shù)據(jù)庫系統(tǒng)方便地轉(zhuǎn)移到Hadoop中,可以自定義數(shù)據(jù)類型以及元數(shù)據(jù)傳播的映射。事實(shí)上,你還可以將數(shù)據(jù)(如新的數(shù)據(jù))導(dǎo)入到HDFS、Hive和Hbase中。

Apache Giraph

這是功能強(qiáng)大的圖形處理平臺,具有很好可擴(kuò)展性和可用性。該技術(shù)已經(jīng)被Facebook采用,Giraph可以運(yùn)行在Hadoop環(huán)境中,可以將它直接部署到現(xiàn)有的Hadoop系統(tǒng)中。通過這種方式,你可以得到強(qiáng)大的分布式作圖能力,同時還能利用上現(xiàn)有的大數(shù)據(jù)處理引擎。

Cloudera Impala

Impala模型也可以部署在你現(xiàn)有的Hadoop群集上,監(jiān)視所有的查詢。該技術(shù)和MapReduce一樣,具有強(qiáng)大的批處理能力,而且Impala對于實(shí)時的SQL查詢也有很好的效果,通過高效的SQL查詢,你可以很快的了解到大數(shù)據(jù)平臺上的數(shù)據(jù)。

Gephi

它可以用來對信息進(jìn)行關(guān)聯(lián)和量化處理,通過為數(shù)據(jù)創(chuàng)建功能強(qiáng)大的可視化效果,你可以從數(shù)據(jù)中得到不一樣的洞察力。Gephi已經(jīng)支持多個圖表類型,而且可以在具有上百萬個節(jié)點(diǎn)的大型網(wǎng)絡(luò)上運(yùn)行。Gephi具有活躍的用戶社區(qū),Gephi還提供了大量的插件,可以和現(xiàn)有系統(tǒng)完美的集成到一起,它還可以對復(fù)雜的IT連接、分布式系統(tǒng)中各個節(jié)點(diǎn)、數(shù)據(jù)流等信息進(jìn)行可視化分析。

MongoDB

這個堅(jiān)實(shí)的平臺一直被很多組織推崇,它在大數(shù)據(jù)管理上有極好的性能。MongoDB最初是由DoubleClick公司的員工創(chuàng)建,現(xiàn)在該技術(shù)已經(jīng)被廣泛的應(yīng)用于大數(shù)據(jù)管理。MongoDB是一個應(yīng)用開源技術(shù)開發(fā)的NoSQL數(shù)據(jù)庫,可以用于在JSON這樣的平臺上存儲和處理數(shù)據(jù)。目前,紐約時報、Craigslist以及眾多企業(yè)都采用了MongoDB,幫助他們管理大型數(shù)據(jù)集。(Couchbase服務(wù)器也作為一個參考)。

十大頂尖公司:

Amazon Web Services

Forrester將AWS稱為“云霸主”,談到云計(jì)算領(lǐng)域的大數(shù)據(jù),那就不得不提到亞馬遜。該公司的Hadoop產(chǎn)品被稱為EMR(Elastic Map Reduce),AWS解釋這款產(chǎn)品采用了Hadoop技術(shù)來提供大數(shù)據(jù)管理服務(wù),但它不是純開源Hadoop,經(jīng)過修改后現(xiàn)在被專門用在AWS云上。

Forrester稱EMR有很好的市場前景。很多公司基于EMR為客戶提供服務(wù),有一些公司將EMR應(yīng)用于數(shù)據(jù)查詢、建模、集成和管理。而且AWS還在創(chuàng)新,F(xiàn)orrester稱未來EMR可以基于工作量的需要自動縮放調(diào)整大小。亞馬遜計(jì)劃為其產(chǎn)品和服務(wù)提供更強(qiáng)大的EMR支持,包括它的RedShift數(shù)據(jù)倉庫、新公布的Kenesis實(shí)時處理引擎以及計(jì)劃中的NoSQL數(shù)據(jù)庫和商業(yè)智能工具。不過AWS還沒有自己的Hadoop發(fā)行版。

Cloudera

Cloudera有開源Hadoop的發(fā)行版,這個發(fā)行版采用了Apache Hadoop開源項(xiàng)目的很多技術(shù),不過基于這些技術(shù)的發(fā)行版也有很大的進(jìn)步。Cloudera為它的Hadoop發(fā)行版開發(fā)了很多功能,包括Cloudera管理器,用于管理和監(jiān)控,以及名為Impala的SQL引擎等。Cloudera的Hadoop發(fā)行版基于開源Hadoop,但也不是純開源的產(chǎn)品。當(dāng)Cloudera的客戶需要Hadoop不具備的某些功能時,Cloudera的工程師們就會實(shí)現(xiàn)這些功能,或者找一個擁有這項(xiàng)技術(shù)的合作伙伴。Forrester表示:“Cloudera的創(chuàng)新方法忠于核心Hadoop,但因?yàn)槠淇蓪?shí)現(xiàn)快速創(chuàng)新并積極滿足客戶需求,這一點(diǎn)使它不同于其他那些供應(yīng)商。”目前,Cloudera的平臺已經(jīng)擁有200多個付費(fèi)客戶,一些客戶在Cloudera的技術(shù)支持下已經(jīng)可以跨1000多個節(jié)點(diǎn)實(shí)現(xiàn)對PB級數(shù)據(jù)的有效管理。

Hortonworks

和Cloudera一樣,Hortonworks是一個純粹的Hadoop技術(shù)公司。與Cloudera不同的是,Hortonworks堅(jiān)信開源Hadoop比任何其他供應(yīng)商的Hadoop發(fā)行版都要強(qiáng)大。Hortonworks的目標(biāo)是建立Hadoop生態(tài)圈和Hadoop用戶社區(qū),推進(jìn)開源項(xiàng)目的發(fā)展。Hortonworks平臺和開源Hadoop聯(lián)系緊密,公司管理人員表示這會給用戶帶來好處,因?yàn)樗梢苑乐贡还?yīng)商套牢(如果Hortonworks的客戶想要離開這個平臺,他們可以輕松轉(zhuǎn)向其他開源平臺)。這并不是說Hortonworks完全依賴開源Hadoop技術(shù),而是因?yàn)樵摴緦⑵渌虚_發(fā)的成果回報給了開源社區(qū),比如Ambari,這個工具就是由Hortonworks開發(fā)而成,用來填充集群管理項(xiàng)目漏洞。Hortonworks的方案已經(jīng)得到了Teradata、Microsoft、Red Hat和SAP這些供應(yīng)商的支持。

IBM

當(dāng)企業(yè)考慮一些大的IT項(xiàng)目時,很多人首先會想到IBM。IBM是Hadoop項(xiàng)目的主要參與者之一,F(xiàn)orrester稱IBM已有100多個Hadoop部署,它的很多客戶都有PB級的數(shù)據(jù)。IBM在網(wǎng)格計(jì)算、全球數(shù)據(jù)中心和企業(yè)大數(shù)據(jù)項(xiàng)目實(shí)施等眾多領(lǐng)域有著豐富的經(jīng)驗(yàn)?!癐BM計(jì)劃繼續(xù)整合SPSS分析、高性能計(jì)算、BI工具、數(shù)據(jù)管理和建模、應(yīng)對高性能計(jì)算的工作負(fù)載管理等眾多技術(shù)?!?/p>

Intel

和AWS類似,英特爾不斷改進(jìn)和優(yōu)化Hadoop使其運(yùn)行在自己的硬件上,具體來說,就是讓Hadoop運(yùn)行在其至強(qiáng)芯片上,幫助用戶打破Hadoop系統(tǒng)的一些限制,使軟件和硬件結(jié)合的更好,英特爾的Hadoop發(fā)行版在上述方面做得比較好。Forrester指出英特爾在最近才推出這個產(chǎn)品,所以公司在未來還有很多改進(jìn)的可能,英特爾和微軟都被認(rèn)為是Hadoop市場上的潛力股。

MapR Technologies

MapR的Hadoop發(fā)行版目前為止也許是最好的了,不過很多人可能都沒有聽說過。Forrester對Hadoop用戶的調(diào)查顯示,MapR的評級最高,其發(fā)行版在架構(gòu)和數(shù)據(jù)處理能力上都獲得了最高分。MapR已將一套特殊功能融入其Hadoop發(fā)行版中。例如網(wǎng)絡(luò)文件系統(tǒng)(NFS)、災(zāi)難恢復(fù)以及高可用性功能。Forrester說MapR在Hadoop市場上沒有Cloudera和Hortonworks那樣的知名度,MapR要成為一個真正的大企業(yè),還需要加強(qiáng)伙伴關(guān)系和市場營銷。

Microsoft

微軟在開源軟件問題上一直很低調(diào),但在大數(shù)據(jù)形勢下,它不得不考慮讓W(xué)indows也兼容Hadoop,它還積極投入到開源項(xiàng)目中,以更廣泛地推動Hadoop生態(tài)圈的發(fā)展。我們可以在微軟的公共云Windows Azure HDInsight產(chǎn)品中看到其成果。微軟的Hadoop服務(wù)基于Hortonworks的發(fā)行版,而且是為Azure量身定制的。

微軟也有一些其他的項(xiàng)目,包括名為Polybase的項(xiàng)目,讓Hadoop查詢實(shí)現(xiàn)了SQLServer查詢的一些功能。Forrester說:“微軟在數(shù)據(jù)庫、數(shù)據(jù)倉庫、云、OLAP、BI、電子表格(包括PowerPivot)、協(xié)作和開發(fā)工具市場上有很大優(yōu)勢,而且微軟擁有龐大的用戶群,但要在Hadoop這個領(lǐng)域成為行業(yè)領(lǐng)導(dǎo)者還有很遠(yuǎn)的路要走?!?/p>

Pivotal Software

EMC和Vmware部分大數(shù)據(jù)業(yè)務(wù)分拆組合產(chǎn)生了Pivotal。Pivotal一直努力構(gòu)建一個性能優(yōu)越的Hadoop發(fā)行版,為此,Pivotal在開源Hadoop的基礎(chǔ)上又添加了一些新的工具,包括一個名為HAWQ的SQL引擎以及一個專門解決大數(shù)據(jù)問題的Hadoop應(yīng)用。Forrester稱Pivotal Hadoop平臺的優(yōu)勢在于它整合了Pivotal、EMC、Vmware的眾多技術(shù),Pivotal的真正優(yōu)勢實(shí)際上等于EMC和Vmware兩大公司為其撐腰。到目前為止,Pivotal的用戶還不到100個,而且大多是中小型客戶。

Teradata

對于Teradata來說,Hadoop既是一種威脅也是一種機(jī)遇。數(shù)據(jù)管理,特別是關(guān)于SQL和關(guān)系數(shù)據(jù)庫這一領(lǐng)域是Teradata的專長。所以像Hadoop這樣的NoSQL平臺崛起可能會威脅到Teradata。相反,Teradata接受了Hadoop,通過與Hortonworks合作,Teradata在Hadoop平臺集成了SQL技術(shù),這使Teradata的客戶可以在Hadoop平臺上方便地使用存儲在Teradata數(shù)據(jù)倉庫中的數(shù)據(jù)。

AMPLab

通過將數(shù)據(jù)轉(zhuǎn)變?yōu)樾畔ⅲ覀儾趴梢岳斫馐澜?,而這也正是AMPLab所做的。AMPLab致力于機(jī)器學(xué)習(xí)、數(shù)據(jù)挖掘、數(shù)據(jù)庫、信息檢索、自然語言處理和語音識別等多個領(lǐng)域,努力改進(jìn)對信息包括不透明數(shù)據(jù)集內(nèi)信息的甄別技術(shù)。除了Spark,開源分布式SQL查詢引擎Shark也源于AMPLab,Shark具有極高的查詢效率,具有良好的兼容性和可擴(kuò)展性。近幾年的發(fā)展使計(jì)算機(jī)科學(xué)進(jìn)入到全新的時代,而AMPLab為我們設(shè)想一個運(yùn)用大數(shù)據(jù)、云計(jì)算、通信等各種資源和技術(shù)靈活解決難題的方案,以應(yīng)對越來越復(fù)雜的各種難題。

NoSQL 數(shù)據(jù)庫:何時使用 NoSQL 與 SQL?

NoSQL 數(shù)據(jù)庫因其功能性、易于開發(fā)性和可擴(kuò)展性而廣受認(rèn)可,它們越來越多地用于大數(shù)據(jù)和實(shí)時 Web 應(yīng)用程序,在本文中,我們通過示例討論 NoSQL、何時使用 NoSQL 與 SQL 及其用例。

NoSQL是一種下一代數(shù)據(jù)庫管理系統(tǒng) (DBMS)。NoSQL 數(shù)據(jù)庫具有靈活的模式,可用于構(gòu)建具有大量數(shù)據(jù)和高負(fù)載的現(xiàn)代應(yīng)用程序。

“NoSQL”一詞最初是由 Carlo Strozzi 在 1998 年創(chuàng)造的,盡管自 1960 年代后期以來就已經(jīng)存在類似的數(shù)據(jù)庫。然而,NoSQL 的發(fā)展始于 2009 年初,并且發(fā)展迅速。

在處理大量數(shù)據(jù)時,任何關(guān)系數(shù)據(jù)庫管理系統(tǒng) (RDBMS) 的響應(yīng)時間都會變慢。為了解決這個問題,我們可以通過升級現(xiàn)有硬件來“擴(kuò)大”信息系統(tǒng),這非常昂貴。但是,NoSQL 可以更好地橫向擴(kuò)展并且更具成本效益。

NoSQL 對于非結(jié)構(gòu)化或非常大的數(shù)據(jù)對象(例如聊天日志數(shù)據(jù)、視頻或圖像)非常有用,這就是為什么 NoSQL 在微軟、谷歌、亞馬遜、Meta (Facebook) 等互聯(lián)網(wǎng)巨頭中特別受歡迎的原因。

一些流行的 NoSQL 數(shù)據(jù)庫包括:

隨著企業(yè)更快地積累更大的數(shù)據(jù)集,結(jié)構(gòu)化數(shù)據(jù)和關(guān)系模式并不總是適合。有必要使用非結(jié)構(gòu)化數(shù)據(jù)和大型對象來更好地捕獲這些信息。

傳統(tǒng)的 RDBMS 使用 SQL(結(jié)構(gòu)化查詢語言)語法來存儲和檢索結(jié)構(gòu)化數(shù)據(jù),相反,NoSQL 數(shù)據(jù)庫包含廣泛的功能,可以存儲和檢索結(jié)構(gòu)化、半結(jié)構(gòu)化、非結(jié)構(gòu)化和多態(tài)數(shù)據(jù)。

有時,NoSQL 也被稱為“ 不僅僅是 SQL ”,強(qiáng)調(diào)它可能支持類似 SQL 的語言或與 SQL 數(shù)據(jù)庫并列。SQL 和 NoSQL DBMS 之間的一個區(qū)別是 JOIN 功能。SQL 數(shù)據(jù)庫使用 JOIN 子句來組合來自兩個或多個表的行,因?yàn)?NoSQL 數(shù)據(jù)庫本質(zhì)上不是表格的,所以這個功能并不總是可行或相關(guān)的。

但是,一些 NoSQL DBMS 可以執(zhí)行類似于 JOIN的操作——就像 MongoDB 一樣。這并不意味著不再需要 SQL DBMS,相反,NoSQL 和 SQL 數(shù)據(jù)庫傾向于以不同的方式解決類似的問題。

一般來說,在以下情況下,NoSQL 比 SQL 更可取:

許多行業(yè)都在采用 NoSQL,取代關(guān)系數(shù)據(jù)庫,從而為某些業(yè)務(wù)應(yīng)用程序提供更高的靈活性和可擴(kuò)展性,下面給出了 NoSQL 數(shù)據(jù)庫的一些企業(yè)用例。

內(nèi)容管理是一組用于收集、管理、傳遞、檢索和發(fā)布任何格式的信息的過程,包括文本、圖像、音頻和視頻。NoSQL 數(shù)據(jù)庫可以通過其靈活和開放的數(shù)據(jù)模型為存儲多媒體內(nèi)容提供更好的選擇。

例如,福布斯在短短幾個月內(nèi)就構(gòu)建了一個基于 MongoDB 的定制內(nèi)容管理系統(tǒng),以更低的成本為他們提供了更大的敏捷性。

大數(shù)據(jù)是指太大而無法通過傳統(tǒng)處理系統(tǒng)處理的數(shù)據(jù)集,實(shí)時存儲和檢索大數(shù)據(jù)的系統(tǒng)在分析 歷史 數(shù)據(jù)的同時使用流處理來攝取新數(shù)據(jù),這是一系列非常適合 NoSQL 數(shù)據(jù)庫的功能。

Zoom使用 DynamoDB(按需模式)使其數(shù)據(jù)能夠在沒有性能問題的情況下進(jìn)行擴(kuò)展,即使該服務(wù)在 COVID-19 大流行的早期使用量激增。

物聯(lián)網(wǎng)設(shè)備具有連接到互聯(lián)網(wǎng)或通信網(wǎng)絡(luò)的嵌入式軟件和傳感器,能夠在無需人工干預(yù)的情況下收集和共享數(shù)據(jù)。隨著數(shù)十億臺設(shè)備生成數(shù)不清的數(shù)據(jù),IoT NoSQL 數(shù)據(jù)庫為 IoT 服務(wù)提供商提供了可擴(kuò)展性和更靈活的架構(gòu)。

Freshub就是這樣的一項(xiàng)服務(wù),它從 MySQL 切換到 MongoDB,以更好地處理其大型、動態(tài)、非統(tǒng)一的數(shù)據(jù)集。

擁有數(shù)十億智能手機(jī)用戶,可擴(kuò)展性正成為在移動設(shè)備上提供服務(wù)的企業(yè)面臨的最大挑戰(zhàn)。具有更靈活數(shù)據(jù)模型的 NoSQL DBMS 通常是完美的解決方案。

例如,The Weather Channel使用 MongoDB 數(shù)據(jù)庫每分鐘處理數(shù)百萬個請求,同時還處理用戶數(shù)據(jù)并提供天氣更新。

AWS開源可跨關(guān)聯(lián)式與NoSQL數(shù)據(jù)庫的查詢語言PartiQL

AWS推出了與SQL兼容的查詢語言PartiQL,只要數(shù)據(jù)庫查詢引擎提供PartiQL支持,使用者就能以PartiQL單一查詢關(guān)聯(lián)式數(shù)據(jù)庫的結(jié)構(gòu)化資料,以及開放資料格式中的巢狀資料或是半結(jié)構(gòu)化資料,甚至還能用來查詢NoSQL或是文件數(shù)據(jù)庫中無固定結(jié)構(gòu)(Schema-less)的資料。除了AWS自家的數(shù)據(jù)庫服務(wù),NoSQL數(shù)據(jù)庫Couchbase Server也承諾將會支持PartiQL。

企業(yè)資料分散在關(guān)聯(lián)式數(shù)據(jù)庫、非關(guān)聯(lián)式數(shù)據(jù)庫以及資料湖泊中。高度結(jié)構(gòu)化的資料,儲存在SQL數(shù)據(jù)庫或是資料倉儲;無固定結(jié)構(gòu)的資料則由鍵值儲存、圖形數(shù)據(jù)庫(Graph Database)、分類帳數(shù)據(jù)庫或是時間序列數(shù)據(jù)庫等NoSQL數(shù)據(jù)庫處理;而在資料湖泊中的資料,可能也有部分缺乏結(jié)構(gòu),或是可能為巢狀或是多值結(jié)構(gòu)。不同的資料類型適用于不同的使用案例,而每種類型的資料,可能都有自己的查詢語言。

不同的資料儲存對應(yīng)不同的查詢語言,當(dāng)企業(yè)更換資料格式或是數(shù)據(jù)庫引擎時,可能還需要跟著改變應(yīng)用程式和查詢語法,AWS提到,這對于資料的應(yīng)用,特別是使用資料湖泊的靈活性與效率,有著很大的阻礙。為了統(tǒng)一不同類型數(shù)據(jù)庫存取方法,AWS發(fā)布了查詢語言PartiQL,這是個與SQL兼容的查詢語言,可以用來查詢以各種格式儲存在各地的資料。

用戶可以使用PartiQL來查詢關(guān)聯(lián)式數(shù)據(jù)庫,像是在Redshift實(shí)作交易或是資料分析等應(yīng)用,或?qū)τ贏mazon S3資料湖泊的開放資料格式,同樣能使用PartiQL對巢狀資料與半結(jié)構(gòu)化資料例如Amazon Ion格式進(jìn)行查詢,另外,PartiQL也可用于文件數(shù)據(jù)庫等NoSQL數(shù)據(jù)庫,查詢無固定結(jié)構(gòu)的資料。

AWS表示,PartiQL的出現(xiàn),是為了滿足自家查詢和轉(zhuǎn)換大量資料的需求,其提供嚴(yán)格的SQL兼容性,可與標(biāo)準(zhǔn)SQL混合使用,執(zhí)行連接(Join)、過濾(Filtering)與聚合(Aggregation)操作,并以最小擴(kuò)充支持巢狀和半結(jié)構(gòu)化資料,讓開發(fā)者以簡單且一致的方法,不需要更改查詢語言,就能查詢各種格式和服務(wù)的資料。

PartiQL具格式獨(dú)立性與儲存獨(dú)立性,PartiQL語法和語義不依賴任何資料格式,無論使用者是要查詢JSON、Parquet、ORC、CSV還是Ion等格式,查詢語句的寫法都相同,PartiQL的查詢在綜合邏輯類型系統(tǒng)上運(yùn)作,才對應(yīng)到不同底層的格式。而PartiQL也不相依于特定資料儲存,因此適用于不同的底層資料儲存。

雖然過去針對跨不同類型數(shù)據(jù)庫查詢的問題,已有不少解決方案,AWS指出,像是Postgres JSON同樣也兼容于SQL,但是卻無法良好地處理JSON巢狀資料;而半結(jié)構(gòu)化查詢語言,雖然能良好處理巢狀資料,但卻無法與SQL語言兼容。AWS提到,PartiQL是第一個能夠完全解決這些問題的查詢語言。

目前AWS已在自家多項(xiàng)服務(wù)支持PartiQL,包括Amazon S3 Select、Amazon Glacier Select、Amazon Redshift Spectrum、Amazon QLDB,接下來幾個月將會有更多的AWS服務(wù)支持PartiQL,Couchbase也公布將加入支持PartiQL的行列。現(xiàn)在PartiQL以Apache2.0授權(quán)許可開源,公開教學(xué)、規(guī)范以及參考實(shí)作,所有社群都能使用并參與貢獻(xiàn)。

新聞名稱:哪個服務(wù)提供nosql,相關(guān)服務(wù)有哪些
標(biāo)題來源:http://aaarwkj.com/article42/dsigehc.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供網(wǎng)頁設(shè)計(jì)公司、網(wǎng)站排名營銷型網(wǎng)站建設(shè)、定制網(wǎng)站、做網(wǎng)站、小程序開發(fā)

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)

小程序開發(fā)
欧美精品福利一区二区| 初爱视频教程完整版韩国| 日本中文字幕区二区三区电影| 国内精品老年人视频网站| 国产黄色片网站在线观看| 色偷拍亚洲偷自拍二区| 欧美伦理片三级在线观看| 日韩电影中文字幕一区| 综合激情丁香久久狠狠| 亚洲黄色暴力一区视频| 福利一区二区在线视频| 欧美一区二区日本国产激情| 国产精品久久久久久久av三级| 一区二区三区乱码av| 国产精品久久高清免费| 亚洲黄香蕉视频免费看| 97精品免费在线观看| 亚洲欧美日韩精品av| 一区二区三区蜜桃91| 亚洲精品国产精品粉嫩av| 久青青国产综合自拍视频在线观看| 国产日韩精品一区二区三区在线| 丰满人妻被猛烈进入中| 人妻艳情一区二区三区| 日韩国产推荐一区二区| 久久国产精品一区免费观看| 可以直接看内射的视频| 女人的天堂亚洲的天堂欧美| 蜜桃成人一区二区三区| 国产伦奸在线播放免费| 日韩无遮挡免费在线观看| 亚洲大尺码在线视频香蕉| 欧美一级纯黄电影视频| 色日韩在线观看视频| 国产激情在线四五区观看| 亚洲女同成人在线观看| 高清欧美精品一区二区三区| 欧美日韩国产另类在线视频| 日韩精品视频一区二区在线观看| 五月婷婷色丁香综合激情| 日韩av天堂在线观看|