欧美一级特黄大片做受成人-亚洲成人一区二区电影-激情熟女一区二区三区-日韩专区欧美专区国产专区

如何使用Tensorflow模型實現(xiàn)預(yù)測-創(chuàng)新互聯(lián)

如何使用Tensorflow模型實現(xiàn)預(yù)測?針對這個問題,這篇文章詳細介紹了相對應(yīng)的分析和解答,希望可以幫助更多想解決這個問題的小伙伴找到更簡單易行的方法。

為武安等地區(qū)用戶提供了全套網(wǎng)頁設(shè)計制作服務(wù),及武安網(wǎng)站建設(shè)行業(yè)解決方案。主營業(yè)務(wù)為網(wǎng)站制作、做網(wǎng)站、武安網(wǎng)站設(shè)計,以傳統(tǒng)方式定制建設(shè)網(wǎng)站,并提供域名空間備案等一條龍服務(wù),秉承以專業(yè)、用心的態(tài)度為用戶提供真誠的服務(wù)。我們深信只要達到每一位用戶的要求,就會得到認可,從而選擇與我們長期合作。這樣,我們也可以走得更遠!

模型文件:

如何使用Tensorflow模型實現(xiàn)預(yù)測

預(yù)測圖片:

如何使用Tensorflow模型實現(xiàn)預(yù)測

這里直接貼代碼,都有注釋,應(yīng)該很好理解

import tensorflow as tf
import inference
 
image_size = 128 # 輸入層圖片大小
 
# 模型保存的路徑和文件名
MODEL_SAVE_PATH = "model/"
MODEL_NAME = "model.ckpt"
 
# 加載需要預(yù)測的圖片
image_data = tf.gfile.FastGFile("./data/test/d.png", 'rb').read()
 
# 將圖片格式轉(zhuǎn)換成我們所需要的矩陣格式,第二個參數(shù)為1,代表1維
decode_image = tf.image.decode_png(image_data, 1)
 
# 再把數(shù)據(jù)格式轉(zhuǎn)換成能運算的float32
decode_image = tf.image.convert_image_dtype(decode_image, tf.float32)
 
# 轉(zhuǎn)換成指定的輸入格式形狀
image = tf.reshape(decode_image, [-1, image_size, image_size, 1])
 
# 定義預(yù)測結(jié)果為logit值大的分類,這里是前向傳播算法,也就是卷積層、池化層、全連接層那部分
test_logit = inference.inference(image, train=False, regularizer=None)
 
# 利用softmax來獲取概率
probabilities = tf.nn.softmax(test_logit)
 
# 獲取大概率的標(biāo)簽位置
correct_prediction = tf.argmax(test_logit, 1)
 
# 定義Savar類
saver = tf.train.Saver()
 
with tf.Session() as sess:
  sess.run((tf.global_variables_initializer(), tf.local_variables_initializer()))
 
  # 加載檢查點狀態(tài),這里會獲取最新訓(xùn)練好的模型
  ckpt = tf.train.get_checkpoint_state(MODEL_SAVE_PATH)
  if ckpt and ckpt.model_checkpoint_path:
    # 加載模型和訓(xùn)練好的參數(shù)
    saver.restore(sess, ckpt.model_checkpoint_path)
    print("加載模型成功:" + ckpt.model_checkpoint_path)
 
    # 通過文件名得到模型保存時迭代的輪數(shù).格式:model.ckpt-6000.data-00000-of-00001
    global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
 
    # 獲取預(yù)測結(jié)果
    probabilities, label = sess.run([probabilities, correct_prediction])
 
    # 獲取此標(biāo)簽的概率
    probability = probabilities[0][label]
 
    print("After %s training step(s),validation label = %d, has %g probability" % (global_step, label, probability))
  else:
    print("模型加載失??!" + ckpt.model_checkpoint_path)

運行輸出結(jié)果:

如何使用Tensorflow模型實現(xiàn)預(yù)測

(標(biāo)簽為3,概率為0.984478)

標(biāo)簽字典:

如何使用Tensorflow模型實現(xiàn)預(yù)測

3對應(yīng)小寫d,識別正確。

其他的圖片的預(yù)測結(jié)果:

預(yù)測圖片1:

如何使用Tensorflow模型實現(xiàn)預(yù)測

如何使用Tensorflow模型實現(xiàn)預(yù)測

標(biāo)簽字典:

如何使用Tensorflow模型實現(xiàn)預(yù)測

關(guān)于如何使用Tensorflow模型實現(xiàn)預(yù)測問題的解答就分享到這里了,希望以上內(nèi)容可以對大家有一定的幫助,如果你還有很多疑惑沒有解開,可以關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道了解更多相關(guān)知識。

新聞標(biāo)題:如何使用Tensorflow模型實現(xiàn)預(yù)測-創(chuàng)新互聯(lián)
本文網(wǎng)址:http://aaarwkj.com/article42/ppoec.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供外貿(mào)建站、軟件開發(fā)、Google、網(wǎng)站內(nèi)鏈、關(guān)鍵詞優(yōu)化、虛擬主機

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)

外貿(mào)網(wǎng)站建設(shè)
黄色录像一级二级三级| 97在线观看视频免费| 亚洲国产成人欧美日韩另类| 中文字幕人妻出轨一区二区 | 国产真实老熟女无套内| 成人一区二区三区播放| 蜜臀av一区二区三区人妻| 婷婷网色偷偷亚洲男人| 国产中文字幕乱码中文| 日韩av中文一区二区| 久久精品国产亚洲av麻豆花絮 | 国产精品欧美日韩精品| 日本午夜福利视频在线观看| 免费看真人性生活视频| 素人人妻一区二区三区| 国产乱肥老妇国产一区二| 欧美亚洲成人免费电影| 久久精品人妻麻豆尤物| 国产亚洲欧美久久精品| 亚洲熟妇丰满多毛的大昊| 夜色一区二区av人片| 97视频在线中文字幕| 免费特黄特黄的欧美大片| 日产中文乱码字幕无线观看| 日韩不伦高清一区二区三区| 宅男视频在线观看视频| 亚洲一区成人精品在线| 欧美日韩国产精品精品| 国产av剧情精品麻豆| 精品国产三级a在线观看网站| 亚州中文字幕久久一区| 亚洲av二区三区成人| 国产在线不卡免费精品| 日韩版色视频在线观看| 亚洲av天堂在线观看| 最新日韩一区二区在线| 日韩欧美日日夜夜精品| 一区二区三区日韩专区| 国产日韩久久免费电影| 久久综合亚洲一区二区三区色| 亚洲日本成人av在线观看|