現(xiàn)在無論國內(nèi)外均出現(xiàn)了移動(dòng)醫(yī)療熱,所有的創(chuàng)業(yè)團(tuán)隊(duì)和投資公司均把商業(yè)模式指向了最后的醫(yī)療大數(shù)據(jù)分析。但是可以很負(fù)責(zé)任的說,90% 以上的人都不知道醫(yī)療大數(shù)據(jù)分析是什么東西,因此這是一篇掃盲貼,但是僅供專業(yè)人士。文中分析了醫(yī)療大數(shù)據(jù)、它的維度、方法和成本,以及需要的專業(yè)人才。本文無論是對創(chuàng)業(yè)團(tuán)隊(duì)還是投資機(jī)構(gòu)都是非常有指導(dǎo)意義的。
為平和等地區(qū)用戶提供了全套網(wǎng)頁設(shè)計(jì)制作服務(wù),及平和網(wǎng)站建設(shè)行業(yè)解決方案。主營業(yè)務(wù)為成都網(wǎng)站制作、網(wǎng)站建設(shè)、平和網(wǎng)站設(shè)計(jì),以傳統(tǒng)方式定制建設(shè)網(wǎng)站,并提供域名空間備案等一條龍服務(wù),秉承以專業(yè)、用心的態(tài)度為用戶提供真誠的服務(wù)。我們深信只要達(dá)到每一位用戶的要求,就會(huì)得到認(rèn)可,從而選擇與我們長期合作。這樣,我們也可以走得更遠(yuǎn)!大數(shù)據(jù)定義及其特征
大數(shù)據(jù)顧名思義就是數(shù)量極其龐大的數(shù)據(jù)資料。從上世紀(jì) 80 年代開始,每隔 40 個(gè)月世界上儲(chǔ)存的人均科技信息量就會(huì)翻倍 (Hibert & Lopez, 2011)。2012 年,每天會(huì)有 2.5EB 量的數(shù)據(jù)產(chǎn)生 (Andrew & Erik, 2012)?,F(xiàn)在,2014 年,每天會(huì)有 2.3ZB 量的數(shù)據(jù)產(chǎn)生 (IBM, 2015)。這是一個(gè)什么概念? 現(xiàn)在一般我們電腦的硬盤大小都以 GB,或者 TB 為單位了。1GB 的容量可以儲(chǔ)存約 5.4 億的漢字,或者 170 張普通數(shù)碼相機(jī)拍攝的高精度照片,或者 300-350 首長度為 5-6 分鐘的 MP3 歌曲。 那 GB 和 TB, EB,ZB 的關(guān)系又是怎樣?
1ZB=1024EB=10242PB=10243TB=10244GB。如果你有一臺(tái) 1TB 硬盤容量的電腦,那 1ZB 就是大致等于 10 億臺(tái)電腦的容量, 遠(yuǎn)遠(yuǎn)超出了我們一般的想象。
早期,IBM 定義了大數(shù)據(jù)的特性有 3 個(gè):大量性( Volume), 多樣性(Variety), 快速性(Velocity) (Zikopoulos, Eaton, deRooos, Deutsch, & Lapis, 2012)。后來又有學(xué)者把價(jià)值(Value)加到大數(shù)據(jù)的特性里。隨著時(shí)間的推移和人們思考的進(jìn)一步完善,又有三個(gè)大數(shù)據(jù)的特性被提出: 易變性(Variability),準(zhǔn)確性 (Veracity) 和復(fù)雜性 (Complexity)。
作者認(rèn)為價(jià)值本質(zhì)上是數(shù)據(jù)被分析后體現(xiàn)出來的有用信息知識(shí)的程度,和其他幾個(gè)特性有根本區(qū)別。其他幾個(gè)特性可以說是數(shù)據(jù)工作者具體實(shí)踐中面臨的挑戰(zhàn),而價(jià)值則是征服這些挑戰(zhàn)后獲得的回報(bào)。
大數(shù)據(jù)的6個(gè)特性描述如下:
大量性:一般在大數(shù)據(jù)里,單個(gè)文件大量性的級(jí)別至少為幾十,幾百 GB 以上,一調(diào)查 (Russom, 2013) 顯示相當(dāng)多的機(jī)構(gòu)擁有的數(shù)據(jù)總量在 10 到 99TB 之間。用我們傳統(tǒng)的數(shù)據(jù)庫軟件,1GB 已經(jīng)可以儲(chǔ)存千萬條有著幾百個(gè)變量的數(shù)據(jù)記錄了。
多樣性:泛指數(shù)據(jù)類型及其來源的多樣化 (Troester, 2012),進(jìn)一步可以把數(shù)據(jù)結(jié)構(gòu)歸納為結(jié)構(gòu)化 (structured),半結(jié)構(gòu)化 (semi-structured),和非結(jié)構(gòu)化 (unstructured) (SAS, 2014) 。
快速性:反映在數(shù)據(jù)的快速產(chǎn)生及數(shù)據(jù)變更的頻率上。比如一份哈佛商學(xué)院的研究報(bào)告稱在 2012 年時(shí),谷歌每天就需要要處理 20PB 的數(shù)據(jù) (Harvard Business Review, 2012)。
易變性:伴隨數(shù)據(jù)快速性的特征,數(shù)據(jù)流還呈現(xiàn)一種波動(dòng)的特征。不穩(wěn)定的數(shù)據(jù)流會(huì)隨著日,季節(jié),特定事件的觸發(fā)出現(xiàn)周期性峰值 (Troester, 2012)。
準(zhǔn)確性:又稱為數(shù)據(jù)保證 (data assurance)。不同方式,渠道收集到的數(shù)據(jù)在質(zhì)量上會(huì)有很大差異。數(shù)據(jù)分析和輸出結(jié)果的錯(cuò)誤程度和可信度在很大程度上取決于收集到的數(shù)據(jù)質(zhì)量的高低 (W.Raghupathi & Raghupathi, 2014)。所謂“垃圾進(jìn),垃圾出”。沒有數(shù)據(jù)保證,大數(shù)據(jù)分析就毫無意義。
復(fù)雜性:復(fù)雜性體現(xiàn)在數(shù)據(jù)的管理和操作上。IT 時(shí)代,隨著數(shù)據(jù)來源及數(shù)據(jù)量的爆發(fā),各種不同渠道數(shù)據(jù)的大量涌現(xiàn),數(shù)據(jù)的管理和操作已經(jīng)變得原來越復(fù)雜。如何抽取,轉(zhuǎn)換,加載,連接,關(guān)聯(lián)以把握數(shù)據(jù)內(nèi)蘊(yùn)的有用信息已經(jīng)變得越來越有挑戰(zhàn)性。
醫(yī)療大數(shù)據(jù)的爆發(fā)
早期,大部分醫(yī)療相關(guān)數(shù)據(jù)是紙張化的形式存在,而非電子數(shù)據(jù)化存儲(chǔ), 比如官方的醫(yī)藥記錄,收費(fèi)記錄,護(hù)士醫(yī)生手寫的病例記錄,處方藥記錄,X 光片記錄,磁共振成像(MRI)記錄,CT 影像記錄等等。
隨著強(qiáng)大的數(shù)據(jù)存儲(chǔ),計(jì)算平臺(tái),及移動(dòng)互聯(lián)網(wǎng)的發(fā)展,現(xiàn)在的趨勢是醫(yī)療數(shù)據(jù)的大量爆發(fā)及快速的電子數(shù)字化。以上提到的醫(yī)療數(shù)據(jù)都在不同程度上向數(shù)字化轉(zhuǎn)化。
有報(bào)告顯示,2011 年,單單美國的醫(yī)療健康系統(tǒng)數(shù)據(jù)量就達(dá)到了 150EB。照目前的增長速度, ZB(約 1021GB)和 YB(約 1021GB) 的級(jí)別也會(huì)很快達(dá)到 (IHTT, 2013)。Kaiser Permanente,一個(gè)在加州發(fā)展起來的醫(yī)療健康網(wǎng)絡(luò)系統(tǒng), 就有 9 百萬的會(huì)員,被認(rèn)為擁有 26.5 到 44PB 的電子健康記錄 (IHTT, 2013)。
IT 時(shí)代涌現(xiàn)的還有各種網(wǎng)絡(luò)社交媒體數(shù)據(jù),比如曾經(jīng) Google 用來預(yù)測流感的數(shù)據(jù)?;驍?shù)據(jù)也是非常龐大的存在,一次全面的基因測序,產(chǎn)生的個(gè)人數(shù)據(jù)則達(dá)到 300GB (Leah, 2014)。公開發(fā)布的基因 DNA 微陣列達(dá)到 50 萬之多,每一陣列包含數(shù)萬的分子表達(dá)值。在生物醫(yī)藥方面,功能性磁共振影像的數(shù)據(jù)量也達(dá)到了數(shù)萬 TB 級(jí)別,每一幅影像包含有 5 萬像素值 (Fan, Han, & Liu, 2014)。
此外,各種健身,健康可穿戴設(shè)備的出現(xiàn),使得血壓、心率、體重,血糖,心電圖(EKG)等的監(jiān)測都變?yōu)楝F(xiàn)實(shí)和可能,信息的獲取和分析的速度已經(jīng)從原來的按“天”計(jì)算,發(fā)展到了按“小時(shí)”,按“秒”計(jì)算。比如,一家名為 Blue Spark 的科技公司已經(jīng)生產(chǎn)出能 24 小時(shí)實(shí)時(shí)監(jiān)測體溫的新型溫度計(jì)貼片 temptraq。
這種數(shù)據(jù)的擴(kuò)展速度和覆蓋范圍是前所未有的,數(shù)據(jù)的格式也五花八門,可能是無格式文件(flat file),CSV,關(guān)系表,ASCII/ 純文本文件等等。
同時(shí),數(shù)據(jù)的來源也紛繁復(fù)雜,可能來自不同的地區(qū),不同的醫(yī)療機(jī)構(gòu),不同的軟件應(yīng)用。不可否認(rèn),一旦理順了多格式,多源頭,呈爆炸性成長的大數(shù)據(jù)的整合和分析,醫(yī)療大數(shù)據(jù)將對提高醫(yī)療質(zhì)量,強(qiáng)化患者安全,降低風(fēng)險(xiǎn),降低醫(yī)療成本等方面發(fā)揮無與倫比的巨大作用。
醫(yī)療大數(shù)據(jù)的優(yōu)勢和應(yīng)用場景
有效的整合和利用數(shù)字化的醫(yī)療大數(shù)據(jù)對個(gè)體醫(yī)生,康寶中心,大型醫(yī)院,和醫(yī)療研究機(jī)構(gòu)都有著顯著的好處。
潛在的利益包括 (W.Raghupathi & Raghupathi, 2014):
1)更多更準(zhǔn)確的數(shù)據(jù)使得疾病能在早期被監(jiān)測到,從而使治療更容易和有效。
2)通過對特定個(gè)體或人群的健康管理,快速有效地監(jiān)測保健詐騙。
3)基于大量的歷史數(shù)據(jù),預(yù)測和估計(jì)特定疾病或人群的某些未來趨勢,比如:預(yù)測特定病人的住院時(shí)間,哪些病人會(huì)選擇非急需性手術(shù), 哪些病人不會(huì)從手術(shù)治療中受益,哪些病人會(huì)更容易出現(xiàn)并發(fā)癥,等等。麥肯錫估計(jì),單單就美國而言,醫(yī)療大數(shù)據(jù)的利用可以為醫(yī)療開支節(jié)省出 3 千億美元一年。
醫(yī)療大數(shù)據(jù)的利用可以從以下幾方面減少浪費(fèi)和提高效率 (Manyika, 以及其他人, 2011):
臨床操作: 相對更有效的醫(yī)學(xué)研究,發(fā)展出臨床相關(guān)性更強(qiáng)和成本效益更高的方法用來診斷和治療病人。
研究和發(fā)展:在藥品和醫(yī)療器械方面,建立更低磨損度,更精簡,更快速,更有針對性的研發(fā)產(chǎn)品線。統(tǒng)計(jì)工具和算法方面,提高臨床試驗(yàn)設(shè)計(jì)和患者的招募,使得治療方法可以更好地匹配個(gè)體患者的病癥,從而降低臨床試驗(yàn)失敗的可能和加快新的治療方法推向市場。分析臨床試驗(yàn)和病人的病歷,以確定后續(xù)的跡象,并在產(chǎn)品進(jìn)入市場前發(fā)現(xiàn)病人對藥物醫(yī)療方法的不良反應(yīng)。
公共衛(wèi)生:分析疾病模式和追蹤疾病暴發(fā)及傳播方式途徑,提高公共衛(wèi)生監(jiān)測和反應(yīng)速度。更快更準(zhǔn)確地研制靶向疫苗,例如:開發(fā)每年的流感疫苗。
此外,醫(yī)療大數(shù)據(jù)的分析還有利于以下幾方面的發(fā)展 (W.Raghupathi & Raghupathi, 2014):
循證醫(yī)學(xué):結(jié)合和分析各種結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù),電子病歷,財(cái)務(wù)和運(yùn)營數(shù)據(jù),臨床資料和基因組數(shù)據(jù)用以尋找與病癥信息相匹配的治療,預(yù)測疾病的高危患者或提供更多高效的醫(yī)療服務(wù)。
基因組分析:更有效和低成本的執(zhí)行基因測序,使基因組分析成為正規(guī)醫(yī)療保健決策的必要信息并納入病人病歷記錄。
提前裁定欺詐分析:快速分析大量的索賠請求,降低欺詐成功率,減少浪費(fèi)和濫用。
設(shè)備/遠(yuǎn)程監(jiān)控:從住院和家庭醫(yī)療裝置采集和分析實(shí)時(shí)大容量的快速移動(dòng)數(shù)據(jù),用于安全監(jiān)控和不良反應(yīng)的預(yù)測。
病人的個(gè)人資料分析:全面分析病人個(gè)人信息(例如,分割和預(yù)測模型)從中找到能從特定健保措施中獲益的個(gè)人。例如,某些疾病的高?;颊?如糖尿病)可以從預(yù)防措施中受益。這些人如果擁有足夠的時(shí)間提前有針對性的預(yù)防病情,那么大多數(shù)的危害可以降到最低程度,甚至可以完全消除。
然而,根據(jù)一份針對美國和加拿大 333 家醫(yī)療機(jī)構(gòu)及 10 家其他機(jī)構(gòu)的調(diào)查 (IHTT, 2013),2013 年,醫(yī)療機(jī)構(gòu)累積的數(shù)據(jù)量比 2011 年多出了 85%, 但 77% 的醫(yī)療健康行政人員對自己機(jī)構(gòu)在數(shù)據(jù)管理方面的能力評(píng)價(jià)為“C”。此外,僅有 34% 報(bào)告他們能從電子健康記錄(EHR)中獲取數(shù)據(jù)用來幫助病人,而有 43% 報(bào)告他們不能收集到足夠多的數(shù)據(jù)來幫助病人。由此可見,在北美的醫(yī)療系統(tǒng)中,醫(yī)療大數(shù)據(jù)的管理使用準(zhǔn)備工作還有一大段路要走。中國也是處在起步階段。
網(wǎng)頁名稱:淺談醫(yī)學(xué)大數(shù)據(jù)(上)
文章網(wǎng)址:http://aaarwkj.com/article44/chephe.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供企業(yè)建站、品牌網(wǎng)站設(shè)計(jì)、網(wǎng)站設(shè)計(jì)、電子商務(wù)、外貿(mào)建站、App設(shè)計(jì)
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來源: 創(chuàng)新互聯(lián)