欧美一级特黄大片做受成人-亚洲成人一区二区电影-激情熟女一区二区三区-日韩专区欧美专区国产专区

Python可視化工具包有哪些-創(chuàng)新互聯(lián)

這篇文章主要為大家展示了“Python可視化工具包有哪些”,內(nèi)容簡而易懂,條理清晰,希望能夠幫助大家解決疑惑,下面讓小編帶領(lǐng)大家一起研究并學(xué)習(xí)一下“Python可視化工具包有哪些”這篇文章吧。

創(chuàng)新互聯(lián)建站專注于企業(yè)營銷型網(wǎng)站建設(shè)、網(wǎng)站重做改版、亞東網(wǎng)站定制設(shè)計(jì)、自適應(yīng)品牌網(wǎng)站建設(shè)、H5場景定制商城系統(tǒng)網(wǎng)站開發(fā)、集團(tuán)公司官網(wǎng)建設(shè)、成都外貿(mào)網(wǎng)站建設(shè)公司、高端網(wǎng)站制作、響應(yīng)式網(wǎng)頁設(shè)計(jì)等建站業(yè)務(wù),價(jià)格優(yōu)惠性價(jià)比高,為亞東等各大城市提供網(wǎng)站開發(fā)制作服務(wù)。

Matplotlib、Seaborn 和 Pandas

把這三個(gè)包放在一起有幾個(gè)原因:首先 Seaborn 和 Pandas 是建立在 Matplotlib 之上的,當(dāng)你在用 Seaborn 或 Pandas 中的 df.plot() 時(shí),用的其實(shí)是別人用 Matplotlib 寫的代碼。因此,這些圖在美化方面是相似的,自定義圖時(shí)用的語法也都非常相似。

當(dāng)提到這些可視化工具時(shí),我想到三個(gè)詞:探索(Exploratory)、數(shù)據(jù)(Data)、分析(Analysis)。這些包都很適合第一次探索數(shù)據(jù),但要做演示時(shí)用這些包就不夠了。

Matplotlib 是比較低級的庫,但它所支持的自定義程度令人難以置信(所以不要簡單地將其排除在演示所用的包之外?。€有其它更適合做展示的工具。

Matplotlib 還可以選擇樣式(style selection),它模擬了像 ggplot2 和 xkcd 等很流行的美化工具。下面是我用 Matplotlib 及相關(guān)工具所做的示例圖:

在處理籃球隊(duì)薪資數(shù)據(jù)時(shí),我想找出薪資中位數(shù)最高的團(tuán)隊(duì)。為了展示結(jié)果,我將每個(gè)球隊(duì)的工資用顏色標(biāo)成條形圖,來說明球員加入哪一支球隊(duì)才能獲得更好的待遇。

import seaborn as sns
import matplotlib.pyplot as plt
color_order = ['xkcd:cerulean', 'xkcd:ocean',
    'xkcd:black','xkcd:royal purple',
    'xkcd:royal purple', 'xkcd:navy blue',
    'xkcd:powder blue', 'xkcd:light maroon', 
    'xkcd:lightish blue','xkcd:navy']
sns.barplot(x=top10.Team,
   y=top10.Salary,
   palette=color_order).set_title('Teams with Highest Median Salary')
plt.ticklabel_format(style='sci', axis='y', scilimits=(0,0))

Python可視化工具包有哪些

第二個(gè)圖是回歸實(shí)驗(yàn)殘差的 Q-Q 圖。這張圖的主要目的是展示如何用盡量少的線條做出一張有用的圖,當(dāng)然也許它可能不那么美觀。

import matplotlib.pyplot as plt
import scipy.stats as stats
#model2 is a regression model
log_resid = model2.predict(X_test)-y_test
stats.probplot(log_resid, dist="norm", plot=plt)
plt.title("Normal Q-Q plot")
plt.show()

Python可視化工具包有哪些

最終證明,Matplotlib 及其相關(guān)工具的效率很高,但就演示而言它們并不是最好的工具。

ggplot(2)

你可能會問,「Aaron,ggplot 是 R 中最常用的可視化包,但你不是要寫 Python 的包嗎?」。人們已經(jīng)在 Python 中實(shí)現(xiàn)了 ggplot2,復(fù)制了這個(gè)包從美化到語法的一切內(nèi)容。

在我看過的所有材料中,它的一切都和 ggplot2 很像,但這個(gè)包的好處是它依賴于 Pandas Python 包。不過 Pandas Python 包最近棄用了一些方法,導(dǎo)致 Python 版本不兼容。

如果你想在 R 中用真正的 ggplot(除了依賴關(guān)系外,它們的外觀、感覺以及語法都是一樣的),我在另外一篇文章中對此進(jìn)行過討論。

也就是說,如果你一定要在 Python 中用 ggplot,那你就必須要安裝 0.19.2 版的 Pandas,但我建議你最好不要為了使用較低級的繪圖包而降低 Pandas 的版本。

ggplot2(我覺得也包括 Python 的 ggplot)舉足輕重的原因是它們用「圖形語法」來構(gòu)建圖片?;厩疤崾悄憧梢詫?shí)例化圖,然后分別添加不同的特征;也就是說,你可以分別對標(biāo)題、坐標(biāo)軸、數(shù)據(jù)點(diǎn)以及趨勢線等進(jìn)行美化。

下面是 ggplot 代碼的簡單示例。我們先用 ggplot 實(shí)例化圖,設(shè)置美化屬性和數(shù)據(jù),然后添加點(diǎn)、主題以及坐標(biāo)軸和標(biāo)題標(biāo)簽。

#All Salaries
ggplot(data=df, aes(x=season_start, y=salary, colour=team)) +
 geom_point() +
 theme(legend.position="none") +
 labs(title = 'Salary Over Time', x='Year', y='Salary ($)')

Python可視化工具包有哪些

Bokeh

Bokeh 很美。從概念上講,Bokeh 類似于 ggplot,它們都是用圖形語法來構(gòu)建圖片,但 Bokeh 具備可以做出專業(yè)圖形和商業(yè)報(bào)表且便于使用的界面。為了說明這一點(diǎn),我根據(jù) 538 Masculinity Survey 數(shù)據(jù)集寫了制作直方圖的代碼:

import pandas as pd
from bokeh.plotting import figure
from bokeh.io import show
# is_masc is a one-hot encoded dataframe of responses to the question:
# "Do you identify as masculine?"
#Dataframe Prep
counts = is_masc.sum()
resps = is_masc.columns
#Bokeh
p2 = figure(title='Do You View Yourself As Masculine?',
   x_axis_label='Response',
   y_axis_label='Count',
   x_range=list(resps))
p2.vbar(x=resps, top=counts, width=0.6, fill_color='red', line_color='black')
show(p2)
#Pandas
counts.plot(kind='bar')

Python可視化工具包有哪些 

用 Bokeh 表示調(diào)查結(jié)果

紅色的條形圖表示 538 個(gè)人關(guān)于「你認(rèn)為自己有男子漢氣概嗎?」這一問題的答案。9~14 行的 Bokeh 代碼構(gòu)建了優(yōu)雅且專業(yè)的響應(yīng)計(jì)數(shù)直方圖——字體大小、y 軸刻度和格式等都很合理。

我寫的代碼大部分都用于標(biāo)記坐標(biāo)軸和標(biāo)題,以及為條形圖添加顏色和邊框。在制作美觀且表現(xiàn)力強(qiáng)的圖片時(shí),我更傾向于使用 Bokeh——它已經(jīng)幫我們完成了大量美化工作。

Python可視化工具包有哪些

用 Pandas 表示相同的數(shù)據(jù)

藍(lán)色的圖是上面的第 17 行代碼。這兩個(gè)直方圖的值是一樣的,但目的不同。在探索性設(shè)置中,用 Pandas 寫一行代碼查看數(shù)據(jù)很方便,但 Bokeh 的美化功能非常強(qiáng)大。

Bokeh 提供的所有便利都要在 matplotlib 中自定義,包括 x 軸標(biāo)簽的角度、背景線、y 軸刻度以及字體(大小、斜體、粗體)等。下圖展示了一些隨機(jī)趨勢,其自定義程度更高:使用了圖例和不同的顏色和線條。

Python可視化工具包有哪些

Bokeh 還是制作交互式商業(yè)報(bào)表的絕佳工具。

Plotly

Plotly 非常強(qiáng)大,但用它設(shè)置和創(chuàng)建圖形都要花費(fèi)大量時(shí)間,而且都不直觀。在用 Plotly 忙活了大半個(gè)上午后,我?guī)缀跏裁炊紱]做出來,干脆直接去吃飯了。我只創(chuàng)建了不帶坐標(biāo)標(biāo)簽的條形圖,以及無法刪掉線條的「散點(diǎn)圖」。Ploty 入門時(shí)有一些要注意的點(diǎn):

  • 安裝時(shí)要有 API 秘鑰,還要注冊,不是只用 pip 安裝就可以;

  • Plotly 所繪制的數(shù)據(jù)和布局對象是獨(dú)一無二的,但并不直觀;

  • 圖片布局對我來說沒有用(40 行代碼毫無意義?。?/p>

  • 但它也有優(yōu)點(diǎn),而且設(shè)置中的所有缺點(diǎn)都有相應(yīng)的解決方法:

  • 你可以在 Plotly 網(wǎng)站和 Python 環(huán)境中編輯圖片;

  • 支持交互式圖片和商業(yè)報(bào)表;

  • Plotly 與 Mapbox 合作,可以自定義地圖;

  • 很有潛力繪制優(yōu)秀圖形。

以下是我針對這個(gè)包編寫的代碼:

#plot 1 - barplot
# **note** - the layout lines do nothing and trip no errors
data = [go.Bar(x=team_ave_df.team,
    y=team_ave_df.turnovers_per_mp)]
layout = go.Layout(
 title=go.layout.Title(
  text='Turnovers per Minute by Team',
  xref='paper',
  x=0
 ),
 xaxis=go.layout.XAxis(
  title = go.layout.xaxis.Title(
   text='Team',
   font=dict(
     family='Courier New, monospace',
     size=18,
     color='#7f7f7f'
    )
  )
 ),
 yaxis=go.layout.YAxis(
  title = go.layout.yaxis.Title(
   text='Average Turnovers/Minute',
   font=dict(
     family='Courier New, monospace',
     size=18,
     color='#7f7f7f'
    )
  )
 ),
 autosize=True,
 hovermode='closest')
py.iplot(figure_or_data=data, layout=layout, filename='jupyter-plot', sharing='public', fileopt='overwrite')
#plot 2 - attempt at a scatterplot
data = [go.Scatter(x=player_year.minutes_played,
     y=player_year.salary,
     marker=go.scatter.Marker(color='red',
           size=3))]
layout = go.Layout(title="test",
    xaxis=dict(title='why'),
    yaxis=dict(title='plotly'))
py.iplot(figure_or_data=data, layout=layout, filename='jupyter-plot2', sharing='public')
[Image: image.png]

Python可視化工具包有哪些

表示不同 NBA 球隊(duì)每分鐘平均失誤數(shù)的條形圖。

Python可視化工具包有哪些

表示薪水和在 NBA 的打球時(shí)間之間關(guān)系的散點(diǎn)圖

總體來說,開箱即用的美化工具看起來很好,但我多次嘗試逐字復(fù)制文檔和修改坐標(biāo)軸標(biāo)簽時(shí)卻失敗了。但下面的圖展示了 Plotly 的潛力,以及我為什么要在它身上花好幾個(gè)小時(shí):

Python可視化工具包有哪些

Plotly 頁面上的一些示例圖

Pygal

Pygal 的名氣就不那么大了,和其它常用的繪圖包一樣,它也是用圖形框架語法來構(gòu)建圖像的。由于繪圖目標(biāo)比較簡單,因此這是一個(gè)相對簡單的繪圖包。使用 Pygal 非常簡單:

  • 實(shí)例化圖片;

  • 用圖片目標(biāo)屬性格式化;

  • 用 figure.add() 將數(shù)據(jù)添加到圖片中。

我在使用 Pygal 的過程中遇到的主要問題在于圖片渲染。必須要用 render_to_file 選項(xiàng),然后在 web 瀏覽器中打開文件,才能看見我剛剛構(gòu)建的東西。

最終看來這是值得的,因?yàn)閳D片是交互式的,有令人滿意而且便于自定義的美化功能。總而言之,這個(gè)包看起來不錯(cuò),但在文件的創(chuàng)建和渲染部分比較麻煩。

Python可視化工具包有哪些

Networkx

雖然 Networkx 是基于 matplotlib 的,但它仍是圖形分析和可視化的絕佳解決方案。圖形和網(wǎng)絡(luò)不是我的專業(yè)領(lǐng)域,但 Networkx 可以快速簡便地用圖形表示網(wǎng)絡(luò)之間的連接。以下是我針對一個(gè)簡單圖形構(gòu)建的不同的表示,以及一些從斯坦福 SNAP 下載的代碼(關(guān)于繪制小型 Facebook 網(wǎng)絡(luò))。

Python可視化工具包有哪些

我按編號(1~10)用顏色編碼了每個(gè)節(jié)點(diǎn),代碼如下:

options = {
 'node_color' : range(len(G)),
 'node_size' : 300,
 'width' : 1,
 'with_labels' : False,
 'cmap' : plt.cm.coolwarm
}
nx.draw(G, **options)

Python可視化工具包有哪些

用于可視化上面提到的稀疏 Facebook 圖形的代碼如下:

import itertools
import networkx as nx
import matplotlib.pyplot as plt
f = open('data/facebook/1684.circles', 'r')
circles = [line.split() for line in f]
f.close()
network = []
for circ in circles:
 cleaned = [int(val) for val in circ[1:]]
 network.append(cleaned)
G = nx.Graph()
for v in network:
 G.add_nodes_from(v)
edges = [itertools.combinations(net,2) for net in network]
for edge_group in edges:
 G.add_edges_from(edge_group)
options = {
 'node_color' : 'lime',
 'node_size' : 3,
 'width' : 1,
 'with_labels' : False,
}
nx.draw(G, **options)

Python可視化工具包有哪些

這個(gè)圖形非常稀疏,Networkx 通過大化每個(gè)集群的間隔展現(xiàn)了這種稀疏化。

有很多數(shù)據(jù)可視化的包,但沒法說哪個(gè)是最好的。希望閱讀本文后,你可以了解到在不同的情境下,該如何使用不同的美化工具和代碼。

以上是“Python可視化工具包有哪些”這篇文章的所有內(nèi)容,感謝各位的閱讀!相信大家都有了一定的了解,希望分享的內(nèi)容對大家有所幫助,如果還想學(xué)習(xí)更多知識,歡迎關(guān)注創(chuàng)新互聯(lián)成都網(wǎng)站設(shè)計(jì)公司行業(yè)資訊頻道!

另外有需要云服務(wù)器可以了解下創(chuàng)新互聯(lián)scvps.cn,海內(nèi)外云服務(wù)器15元起步,三天無理由+7*72小時(shí)售后在線,公司持有idc許可證,提供“云服務(wù)器、裸金屬服務(wù)器、高防服務(wù)器、香港服務(wù)器、美國服務(wù)器、虛擬主機(jī)、免備案服務(wù)器”等云主機(jī)租用服務(wù)以及企業(yè)上云的綜合解決方案,具有“安全穩(wěn)定、簡單易用、服務(wù)可用性高、性價(jià)比高”等特點(diǎn)與優(yōu)勢,專為企業(yè)上云打造定制,能夠滿足用戶豐富、多元化的應(yīng)用場景需求。

網(wǎng)站名稱:Python可視化工具包有哪些-創(chuàng)新互聯(lián)
轉(zhuǎn)載源于:http://aaarwkj.com/article46/ccddeg.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供網(wǎng)站設(shè)計(jì)、做網(wǎng)站、軟件開發(fā)、網(wǎng)站收錄、定制網(wǎng)站小程序開發(fā)

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來源: 創(chuàng)新互聯(lián)

營銷型網(wǎng)站建設(shè)
91免费在线观看高清| 激情亚洲综合一区二区| 国产精品一区二区黑人巨大| 四虎在线观看永久地址| 国产精品三级竹菊影视| 日本高清久久一区二区三区| 久久亚洲av电影网站| 99在线精品热视频| 人妻久久久久久精品99| 欧美精品一区二区三区色| 国产精品亚洲在钱视频| 加勒比视频在线观看一区| 一区二区三区毛片免费| 亚洲日本日本午夜精品| av黄色资源在线观看| 国产精品欧美一区二区视频| 精品国产亚洲av未满十八| 亚洲av中文久久精品国内| 日韩在线视频网站不卡| 久久国产精品av在线观看| av午夜精品一区二区| 欧美色精品人妻在线最新| 亚洲欧洲国产视频一区二区| 日韩有码一区在线观看| 国产黄色大片一级久久| 国产精品成人一区二区艾草| 欧美黄片视频在线免费看| 国产熟女av一区二区| 国产精品久久99粉嫩| 国产精品麻豆一区二区三区| 精品人妻一区二区三区蜜桃电| 国产黄色三级电影在线| 人妻操人人妻中出av| 久久精品午夜福利一区| 国产一级黄色片免费看| 免费在线观看日韩av大片| 最新国产情侣夫妻激情| 真实国产熟女一区二区三区| 人妻巨乳一区二区三区| 97人妻人人澡人人爽| 一区二区三区av夏目彩春|