這篇文章將為大家詳細講解有關(guān)python中怎么使用scipy.linalg模塊計算矩陣的行列式,小編覺得挺實用的,因此分享給大家做個參考,希望大家閱讀完這篇文章后可以有所收獲。
十載的海鹽網(wǎng)站建設(shè)經(jīng)驗,針對設(shè)計、前端、開發(fā)、售后、文案、推廣等六對一服務(wù),響應(yīng)快,48小時及時工作處理。營銷型網(wǎng)站的優(yōu)勢是能夠根據(jù)用戶設(shè)備顯示端的尺寸不同,自動調(diào)整海鹽建站的顯示方式,使網(wǎng)站能夠適用不同顯示終端,在瀏覽器中調(diào)整網(wǎng)站的寬度,無論在任何一種瀏覽器上瀏覽網(wǎng)站,都能展現(xiàn)優(yōu)雅布局與設(shè)計,從而大程度地提升瀏覽體驗。創(chuàng)新互聯(lián)公司從事“海鹽網(wǎng)站設(shè)計”,“海鹽網(wǎng)站推廣”以來,每個客戶項目都認真落實執(zhí)行。
python的五大特點:1.簡單易學(xué),開發(fā)程序時,專注的是解決問題,而不是搞明白語言本身。2.面向?qū)ο?,與其他主要的語言如C++和Java相比, Python以一種非常強大又簡單的方式實現(xiàn)面向?qū)ο缶幊獭?.可移植性,Python程序無需修改就可以在各種平臺上運行。4.解釋性,Python語言寫的程序不需要編譯成二進制代碼,可以直接從源代碼運行程序。5.開源,Python是 FLOSS(自由/開放源碼軟件)之一。
作為python中可以計算高等數(shù)學(xué)庫scipy中,scipy.linalg用于計算線性代數(shù),擴展了由numpy.linalg提供的線性代數(shù)例程和矩陣分解功能。如果想要計算方陣的行列式,可以使用scipy.linalg.det()方法,可以輕松的獲取方陣的行列式。
1、scipy.linalg.det()計算方陣的行列式格式
print('Det:',lg.det(arr)) #求矩陣arr的行列式
2、使用scipy.linalg.det()計算方陣的行列式實例
In [22]: from scipy import linalg In [23]: arr = np.array([[1, 2], ....: [3, 4]]) In [24]: linalg.det(arr) Out[24]: -2.0 In [25]: linalg.det(np.ones((3,4))) --------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-25-375ad1d49940> in <module>() ----> 1 linalg.det(np.ones((3,4))) /usr/lib/python2.7/site-packages/scipy/linalg/basic.pyc in det(a, overwrite_a) 398 a1 = np.asarray_chkfinite(a) 399 if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]: --> 400 raise ValueError('expected square matrix') 401 overwrite_a = overwrite_a or _datacopied(a1, a) 402 fdet, = get_flinalg_funcs(('det',), (a1,)) ValueError: expected square matrix py.linalg.inv()
關(guān)于“python中怎么使用scipy.linalg模塊計算矩陣的行列式”這篇文章就分享到這里了,希望以上內(nèi)容可以對大家有一定的幫助,使各位可以學(xué)到更多知識,如果覺得文章不錯,請把它分享出去讓更多的人看到。
網(wǎng)頁標題:python中怎么使用scipy.linalg模塊計算矩陣的行列式
文章網(wǎng)址:http://aaarwkj.com/article46/pjcseg.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供網(wǎng)站收錄、建站公司、服務(wù)器托管、品牌網(wǎng)站制作、全網(wǎng)營銷推廣、手機網(wǎng)站建設(shè)
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)