這期內(nèi)容當(dāng)中小編將會給大家?guī)碛嘘P(guān)PaddlePaddle動態(tài)圖是怎么實現(xiàn)Resnet,文章內(nèi)容豐富且以專業(yè)的角度為大家分析和敘述,閱讀完這篇文章希望大家可以有所收獲。
宜春ssl適用于網(wǎng)站、小程序/APP、API接口等需要進行數(shù)據(jù)傳輸應(yīng)用場景,ssl證書未來市場廣闊!成為成都創(chuàng)新互聯(lián)公司的ssl證書銷售渠道,可以享受市場價格4-6折優(yōu)惠!如果有意向歡迎電話聯(lián)系或者加微信:028-86922220(備注:SSL證書合作)期待與您的合作!
數(shù)據(jù)集:
查看數(shù)據(jù)集圖片 iChallenge-PM中既有病理性近視患者的眼底圖片,也有非病理性近視患者的圖片,命名規(guī)則如下:
病理性近視(PM):文件名以P開頭
非病理性近視(non-PM):
高度近似(high myopia):文件名以H開頭
正常眼睛(normal):文件名以N開頭
我們將病理性患者的圖片作為正樣本,標簽為1; 非病理性患者的圖片作為負樣本,標簽為0。從數(shù)據(jù)集中選取兩張圖片,通過LeNet提取特征,構(gòu)建分類器,對正負樣本進行分類,并將圖片顯示出來。
ResNet
ResNet是2015年ImageNet比賽的冠軍,將識別錯誤率降低到了3.6%,這個結(jié)果甚至超出了正常人眼識別的精度。
通過前面幾個經(jīng)典模型學(xué)習(xí),我們可以發(fā)現(xiàn)隨著深度學(xué)習(xí)的不斷發(fā)展,模型的層數(shù)越來越多,網(wǎng)絡(luò)結(jié)構(gòu)也越來越復(fù)雜。那么是否加深網(wǎng)絡(luò)結(jié)構(gòu),就一定會得到更好的效果呢?從理論上來說,假設(shè)新增加的層都是恒等映射,只要原有的層學(xué)出跟原模型一樣的參數(shù),那么深模型結(jié)構(gòu)就能達到原模型結(jié)構(gòu)的效果。換句話說,原模型的解只是新模型的解的子空間,在新模型解的空間里應(yīng)該能找到比原模型解對應(yīng)的子空間更好的結(jié)果。但是實踐表明,增加網(wǎng)絡(luò)的層數(shù)之后,訓(xùn)練誤差往往不降反升。
Kaiming He等人提出了殘差網(wǎng)絡(luò)ResNet來解決上述問題,其基本思想如圖6所示。
圖6(a):表示增加網(wǎng)絡(luò)的時候,將x映射成y=F(x)y=F(x)y=F(x)輸出。
圖6(b):對圖6(a)作了改進,輸出y=F(x)+xy=F(x) + xy=F(x)+x。這時不是直接學(xué)習(xí)輸出特征y的表示,而是學(xué)習(xí)y?xy-xy?x。
如果想學(xué)習(xí)出原模型的表示,只需將F(x)的參數(shù)全部設(shè)置為0,則y=xy=xy=x是恒等映射。
F(x)=y?xF(x) = y - xF(x)=y?x也叫做殘差項,如果x→yx\rightarrow yx→y的映射接近恒等映射,圖6(b)中通過學(xué)習(xí)殘差項也比圖6(a)學(xué)習(xí)完整映射形式更加容易。
圖6:殘差塊設(shè)計思想
圖6(b)的結(jié)構(gòu)是殘差網(wǎng)絡(luò)的基礎(chǔ),這種結(jié)構(gòu)也叫做殘差塊(residual block)。輸入x通過跨層連接,能更快的向前傳播數(shù)據(jù),或者向后傳播梯度。殘差塊的具體設(shè)計方案如圖7 所示,這種設(shè)計方案也成稱作瓶頸結(jié)構(gòu)(BottleNeck)。
圖7:殘差塊結(jié)構(gòu)示意圖
下圖表示出了ResNet-50的結(jié)構(gòu),一共包含49層卷積和1層全連接,所以被稱為ResNet-50。
圖8:ResNet-50模型網(wǎng)絡(luò)結(jié)構(gòu)示意圖
ResNet-50的具體實現(xiàn)如下代碼所示:
In[2]
import os
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from PIL import Image
DATADIR = '/home/aistudio/work/palm/PALM-Training400/PALM-Training400'
# 文件名以N開頭的是正常眼底圖片,以P開頭的是病變眼底圖片
file1 = 'N0012.jpg'
file2 = 'P0095.jpg'
# 讀取圖片
img1 = Image.open(os.path.join(DATADIR, file1))
img1 = np.array(img1)
img2 = Image.open(os.path.join(DATADIR, file2))
img2 = np.array(img2)
# 畫出讀取的圖片
plt.figure(figsize=(16, 8))
f = plt.subplot(121)
f.set_title('Normal', fontsize=20)
plt.imshow(img1)
f = plt.subplot(122)
f.set_title('PM', fontsize=20)
plt.imshow(img2)
plt.show()
In[4]
# 查看圖片形狀
img1.shape, img2.shape
((2056, 2124, 3), (2056, 2124, 3))
In[3]
#定義數(shù)據(jù)讀取器
import cv2
import random
import numpy as np
# 對讀入的圖像數(shù)據(jù)進行預(yù)處理
def transform_img(img):
# 將圖片尺寸縮放道 224x224
img = cv2.resize(img, (224, 224))
# 讀入的圖像數(shù)據(jù)格式是[H, W, C]
# 使用轉(zhuǎn)置操作將其變成[C, H, W]
img = np.transpose(img, (2,0,1))
img = img.astype('float32')
# 將數(shù)據(jù)范圍調(diào)整到[-1.0, 1.0]之間
img = img / 255.
img = img * 2.0 - 1.0
return img
# 定義訓(xùn)練集數(shù)據(jù)讀取器
def data_loader(datadir, batch_size=10, mode = 'train'):
# 將datadir目錄下的文件列出來,每條文件都要讀入
filenames = os.listdir(datadir)
def reader():
if mode == 'train':
# 訓(xùn)練時隨機打亂數(shù)據(jù)順序
random.shuffle(filenames)
batch_imgs = []
batch_labels = []
for name in filenames:
filepath = os.path.join(datadir, name)
img = cv2.imread(filepath)
img = transform_img(img)
if name[0] == 'H' or name[0] == 'N':
# H開頭的文件名表示高度近似,N開頭的文件名表示正常視力
# 高度近視和正常視力的樣本,都不是病理性的,屬于負樣本,標簽為0
label = 0
elif name[0] == 'P':
# P開頭的是病理性近視,屬于正樣本,標簽為1
label = 1
else:
raise('Not excepted file name')
# 每讀取一個樣本的數(shù)據(jù),就將其放入數(shù)據(jù)列表中
batch_imgs.append(img)
batch_labels.append(label)
if len(batch_imgs) == batch_size:
# 當(dāng)數(shù)據(jù)列表的長度等于batch_size的時候,
# 把這些數(shù)據(jù)當(dāng)作一個mini-batch,并作為數(shù)據(jù)生成器的一個輸出
imgs_array = np.array(batch_imgs).astype('float32')
labels_array = np.array(batch_labels).astype('float32').reshape(-1, 1)
yield imgs_array, labels_array
batch_imgs = []
batch_labels = []
if len(batch_imgs) > 0:
# 剩余樣本數(shù)目不足一個batch_size的數(shù)據(jù),一起打包成一個mini-batch
imgs_array = np.array(batch_imgs).astype('float32')
labels_array = np.array(batch_labels).astype('float32').reshape(-1, 1)
yield imgs_array, labels_array
return reader
# 定義驗證集數(shù)據(jù)讀取器
def valid_data_loader(datadir, csvfile, batch_size=10, mode='valid'):
# 訓(xùn)練集讀取時通過文件名來確定樣本標簽,驗證集則通過csvfile來讀取每個圖片對應(yīng)的標簽
# 請查看解壓后的驗證集標簽數(shù)據(jù),觀察csvfile文件里面所包含的內(nèi)容
# csvfile文件所包含的內(nèi)容格式如下,每一行代表一個樣本,
# 其中第一列是圖片id,第二列是文件名,第三列是圖片標簽,
# 第四列和第五列是Fovea的坐標,與分類任務(wù)無關(guān)
# ID,imgName,Label,Fovea_X,Fovea_Y
# 1,V0001.jpg,0,1157.74,1019.87
# 2,V0002.jpg,1,1285.82,1080.47
# 打開包含驗證集標簽的csvfile,并讀入其中的內(nèi)容
filelists = open(csvfile).readlines()
def reader():
batch_imgs = []
batch_labels = []
for line in filelists[1:]:
line = line.strip().split(',')
name = line[1]
label = int(line[2])
# 根據(jù)圖片文件名加載圖片,并對圖像數(shù)據(jù)作預(yù)處理
filepath = os.path.join(datadir, name)
img = cv2.imread(filepath)
img = transform_img(img)
# 每讀取一個樣本的數(shù)據(jù),就將其放入數(shù)據(jù)列表中
batch_imgs.append(img)
batch_labels.append(label)
if len(batch_imgs) == batch_size:
# 當(dāng)數(shù)據(jù)列表的長度等于batch_size的時候,
# 把這些數(shù)據(jù)當(dāng)作一個mini-batch,并作為數(shù)據(jù)生成器的一個輸出
imgs_array = np.array(batch_imgs).astype('float32')
labels_array = np.array(batch_labels).astype('float32').reshape(-1, 1)
yield imgs_array, labels_array
batch_imgs = []
batch_labels = []
if len(batch_imgs) > 0:
# 剩余樣本數(shù)目不足一個batch_size的數(shù)據(jù),一起打包成一個mini-batch
imgs_array = np.array(batch_imgs).astype('float32')
labels_array = np.array(batch_labels).astype('float32').reshape(-1, 1)
yield imgs_array, labels_array
return reader
In[5]
# 查看數(shù)據(jù)形狀
DATADIR = '/home/aistudio/work/palm/PALM-Training400/PALM-Training400'
train_loader = data_loader(DATADIR,
batch_size=10, mode='train')
data_reader = train_loader()
data = next(data_reader)
data[0].shape, data[1].shape
((10, 3, 224, 224), (10, 1))
In[6]
!pip install xlrd
import pandas as pd
df=pd.read_excel('/home/aistudio/work/palm/PALM-Validation-GT/PM_Label_and_Fovea_Location.xlsx')
df.to_csv('/home/aistudio/work/palm/PALM-Validation-GT/labels.csv',index=False)
Looking in indexes: https://pypi.mirrors.ustc.edu.cn/simple/
Collecting xlrd
Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/b0/16/63576a1a001752e34bf8ea62e367997530dc553b689356b9879339cf45a4/xlrd-1.2.0-py2.py3-none-any.whl (103kB)
|████████████████████████████████| 112kB 9.2MB/s eta 0:00:01
Installing collected packages: xlrd
Successfully installed xlrd-1.2.0
In[7]
#訓(xùn)練和評估代碼
import os
import random
import paddle
import paddle.fluid as fluid
import numpy as np
DATADIR = '/home/aistudio/work/palm/PALM-Training400/PALM-Training400'
DATADIR2 = '/home/aistudio/work/palm/PALM-Validation400'
CSVFILE = '/home/aistudio/work/palm/PALM-Validation-GT/labels.csv'
# 定義訓(xùn)練過程
def train(model):
with fluid.dygraph.guard():
print('start training ... ')
model.train()
epoch_num = 5
# 定義優(yōu)化器
opt = fluid.optimizer.Momentum(learning_rate=0.001, momentum=0.9)
# 定義數(shù)據(jù)讀取器,訓(xùn)練數(shù)據(jù)讀取器和驗證數(shù)據(jù)讀取器
train_loader = data_loader(DATADIR, batch_size=10, mode='train')
valid_loader = valid_data_loader(DATADIR2, CSVFILE)
for epoch in range(epoch_num):
for batch_id, data in enumerate(train_loader()):
x_data, y_data = data
img = fluid.dygraph.to_variable(x_data)
label = fluid.dygraph.to_variable(y_data)
# 運行模型前向計算,得到預(yù)測值
logits = model(img)
# 進行l(wèi)oss計算
loss = fluid.layers.sigmoid_cross_entropy_with_logits(logits, label)
avg_loss = fluid.layers.mean(loss)
if batch_id % 10 == 0:
print("epoch: {}, batch_id: {}, loss is: {}".format(epoch, batch_id, avg_loss.numpy()))
# 反向傳播,更新權(quán)重,清除梯度
avg_loss.backward()
opt.minimize(avg_loss)
model.clear_gradients()
model.eval()
accuracies = []
losses = []
for batch_id, data in enumerate(valid_loader()):
x_data, y_data = data
img = fluid.dygraph.to_variable(x_data)
label = fluid.dygraph.to_variable(y_data)
# 運行模型前向計算,得到預(yù)測值
logits = model(img)
# 二分類,sigmoid計算后的結(jié)果以0.5為閾值分兩個類別
# 計算sigmoid后的預(yù)測概率,進行l(wèi)oss計算
pred = fluid.layers.sigmoid(logits)
loss = fluid.layers.sigmoid_cross_entropy_with_logits(logits, label)
# 計算預(yù)測概率小于0.5的類別
pred2 = pred * (-1.0) + 1.0
# 得到兩個類別的預(yù)測概率,并沿第一個維度級聯(lián)
pred = fluid.layers.concat([pred2, pred], axis=1)
acc = fluid.layers.accuracy(pred, fluid.layers.cast(label, dtype='int64'))
accuracies.append(acc.numpy())
losses.append(loss.numpy())
print("[validation] accuracy/loss: {}/{}".format(np.mean(accuracies), np.mean(losses)))
model.train()
# save params of model
fluid.save_dygraph(model.state_dict(), 'mnist')
# save optimizer state
fluid.save_dygraph(opt.state_dict(), 'mnist')
# 定義評估過程
def evaluation(model, params_file_path):
with fluid.dygraph.guard():
print('start evaluation .......')
#加載模型參數(shù)
model_state_dict, _ = fluid.load_dygraph(params_file_path)
model.load_dict(model_state_dict)
model.eval()
eval_loader = load_data('eval')
acc_set = []
avg_loss_set = []
for batch_id, data in enumerate(eval_loader()):
x_data, y_data = data
img = fluid.dygraph.to_variable(x_data)
label = fluid.dygraph.to_variable(y_data)
# 計算預(yù)測和精度
prediction, acc = model(img, label)
# 計算損失函數(shù)值
loss = fluid.layers.cross_entropy(input=prediction, label=label)
avg_loss = fluid.layers.mean(loss)
acc_set.append(float(acc.numpy()))
avg_loss_set.append(float(avg_loss.numpy()))
# 求平均精度
acc_val_mean = np.array(acc_set).mean()
avg_loss_val_mean = np.array(avg_loss_set).mean()
print('loss={}, acc={}'.format(avg_loss_val_mean, acc_val_mean))
ResNet-50的具體實現(xiàn)如下代碼所示:
In[8]
# -*- coding:utf-8 -*-
# ResNet模型代碼
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, FC
from paddle.fluid.dygraph.base import to_variable
# ResNet中使用了BatchNorm層,在卷積層的后面加上BatchNorm以提升數(shù)值穩(wěn)定性
# 定義卷積批歸一化塊
class ConvBNLayer(fluid.dygraph.Layer):
def __init__(self,
name_scope,
num_channels,
num_filters,
filter_size,
stride=1,
groups=1,
act=None):
"""
name_scope, 模塊的名字
num_channels, 卷積層的輸入通道數(shù)
num_filters, 卷積層的輸出通道數(shù)
stride, 卷積層的步幅
groups, 分組卷積的組數(shù),默認groups=1不使用分組卷積
act, 激活函數(shù)類型,默認act=None不使用激活函數(shù)
"""
super(ConvBNLayer, self).__init__(name_scope)
# 創(chuàng)建卷積層
self._conv = Conv2D(
self.full_name(),
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
bias_attr=False)
# 創(chuàng)建BatchNorm層
self._batch_norm = BatchNorm(self.full_name(), num_filters, act=act)
def forward(self, inputs):
y = self._conv(inputs)
y = self._batch_norm(y)
return y
# 定義殘差塊
# 每個殘差塊會對輸入圖片做三次卷積,然后跟輸入圖片進行短接
# 如果殘差塊中第三次卷積輸出特征圖的形狀與輸入不一致,則對輸入圖片做1x1卷積,將其輸出形狀調(diào)整成一致
class BottleneckBlock(fluid.dygraph.Layer):
def __init__(self,
name_scope,
num_channels,
num_filters,
stride,
shortcut=True):
super(BottleneckBlock, self).__init__(name_scope)
# 創(chuàng)建第一個卷積層 1x1
self.conv0 = ConvBNLayer(
self.full_name(),
num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
act='relu')
# 創(chuàng)建第二個卷積層 3x3
self.conv1 = ConvBNLayer(
self.full_name(),
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
stride=stride,
act='relu')
# 創(chuàng)建第三個卷積 1x1,但輸出通道數(shù)乘以4
self.conv2 = ConvBNLayer(
self.full_name(),
num_channels=num_filters,
num_filters=num_filters * 4,
filter_size=1,
act=None)
# 如果conv2的輸出跟此殘差塊的輸入數(shù)據(jù)形狀一致,則shortcut=True
# 否則shortcut = False,添加1個1x1的卷積作用在輸入數(shù)據(jù)上,使其形狀變成跟conv2一致
if not shortcut:
self.short = ConvBNLayer(
self.full_name(),
num_channels=num_channels,
num_filters=num_filters * 4,
filter_size=1,
stride=stride)
self.shortcut = shortcut
self._num_channels_out = num_filters * 4
def forward(self, inputs):
y = self.conv0(inputs)
conv1 = self.conv1(y)
conv2 = self.conv2(conv1)
# 如果shortcut=True,直接將inputs跟conv2的輸出相加
# 否則需要對inputs進行一次卷積,將形狀調(diào)整成跟conv2輸出一致
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = fluid.layers.elementwise_add(x=short, y=conv2)
layer_helper = LayerHelper(self.full_name(), act='relu')
return layer_helper.append_activation(y)
# 定義ResNet模型
class ResNet(fluid.dygraph.Layer):
def __init__(self, name_scope, layers=50, class_dim=1):
"""
name_scope,模塊名稱
layers, 網(wǎng)絡(luò)層數(shù),可以是50, 101或者152
class_dim,分類標簽的類別數(shù)
"""
super(ResNet, self).__init__(name_scope)
self.layers = layers
supported_layers = [50, 101, 152]
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(supported_layers, layers)
if layers == 50:
#ResNet50包含多個模塊,其中第2到第5個模塊分別包含3、4、6、3個殘差塊
depth = [3, 4, 6, 3]
elif layers == 101:
#ResNet101包含多個模塊,其中第2到第5個模塊分別包含3、4、23、3個殘差塊
depth = [3, 4, 23, 3]
elif layers == 152:
#ResNet50包含多個模塊,其中第2到第5個模塊分別包含3、8、36、3個殘差塊
depth = [3, 8, 36, 3]
# 殘差塊中使用到的卷積的輸出通道數(shù)
num_filters = [64, 128, 256, 512]
# ResNet的第一個模塊,包含1個7x7卷積,后面跟著1個最大池化層
self.conv = ConvBNLayer(
self.full_name(),
num_channels=3,
num_filters=64,
filter_size=7,
stride=2,
act='relu')
self.pool2d_max = Pool2D(
self.full_name(),
pool_size=3,
pool_stride=2,
pool_padding=1,
pool_type='max')
# ResNet的第二到第五個模塊c2、c3、c4、c5
self.bottleneck_block_list = []
num_channels = 64
for block in range(len(depth)):
shortcut = False
for i in range(depth[block]):
bottleneck_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BottleneckBlock(
self.full_name(),
num_channels=num_channels,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1, # c3、c4、c5將會在第一個殘差塊使用stride=2;其余所有殘差塊stride=1
shortcut=shortcut))
num_channels = bottleneck_block._num_channels_out
self.bottleneck_block_list.append(bottleneck_block)
shortcut = True
# 在c5的輸出特征圖上使用全局池化
self.pool2d_avg = Pool2D(
self.full_name(), pool_size=7, pool_type='avg', global_pooling=True)
# stdv用來作為全連接層隨機初始化參數(shù)的方差
import math
stdv = 1.0 / math.sqrt(2048 * 1.0)
# 創(chuàng)建全連接層,輸出大小為類別數(shù)目
self.out = FC(self.full_name(),
size=class_dim,
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv)))
def forward(self, inputs):
y = self.conv(inputs)
y = self.pool2d_max(y)
for bottleneck_block in self.bottleneck_block_list:
y = bottleneck_block(y)
y = self.pool2d_avg(y)
y = self.out(y)
return y
In[9]
with fluid.dygraph.guard():
model = ResNet("ResNet")
train(model)
start training ...
epoch: 0, batch_id: 0, loss is: [0.83079195]
epoch: 0, batch_id: 10, loss is: [0.5477183]
epoch: 0, batch_id: 20, loss is: [0.87052524]
epoch: 0, batch_id: 30, loss is: [1.0255078]
[validation] accuracy/loss: 0.7450000047683716/0.5235034823417664
epoch: 1, batch_id: 0, loss is: [0.41455013]
epoch: 1, batch_id: 10, loss is: [0.54812586]
epoch: 1, batch_id: 20, loss is: [0.17374663]
epoch: 1, batch_id: 30, loss is: [0.30293828]
[validation] accuracy/loss: 0.887499988079071/0.27671539783477783
epoch: 2, batch_id: 0, loss is: [0.38499922]
epoch: 2, batch_id: 10, loss is: [0.29150736]
epoch: 2, batch_id: 20, loss is: [0.3396409]
[validation] accuracy/loss: 0.9274999499320984/0.17061272263526917
epoch: 3, batch_id: 0, loss is: [0.06969612]
epoch: 3, batch_id: 10, loss is: [0.0861987]
epoch: 3, batch_id: 20, loss is: [0.05332329]
epoch: 3, batch_id: 30, loss is: [0.46470308]
[validation] accuracy/loss: 0.9375/0.20805077254772186
epoch: 4, batch_id: 0, loss is: [0.38617897]
epoch: 4, batch_id: 10, loss is: [0.16854036]
epoch: 4, batch_id: 20, loss is: [0.05454079]
epoch: 4, batch_id: 30, loss is: [0.32432565]
[validation] accuracy/loss: 0.8600000143051147/0.3488900661468506
上述就是小編為大家分享的PaddlePaddle動態(tài)圖是怎么實現(xiàn)Resnet了,如果剛好有類似的疑惑,不妨參照上述分析進行理解。如果想知道更多相關(guān)知識,歡迎關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道。
當(dāng)前文章:PaddlePaddle動態(tài)圖是怎么實現(xiàn)Resnet
本文URL:http://aaarwkj.com/article48/iggghp.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供網(wǎng)站營銷、企業(yè)建站、建站公司、關(guān)鍵詞優(yōu)化、網(wǎng)站排名、網(wǎng)站設(shè)計公司
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)