欧美一级特黄大片做受成人-亚洲成人一区二区电影-激情熟女一区二区三区-日韩专区欧美专区国产专区

加速Python編程的小技巧有哪些

本篇內(nèi)容主要講解“加速Python編程的小技巧有哪些”,感興趣的朋友不妨來看看。本文介紹的方法操作簡單快捷,實用性強。下面就讓小編來帶大家學習“加速Python編程的小技巧有哪些”吧!

我們提供的服務有:網(wǎng)站設計制作、網(wǎng)站設計、微信公眾號開發(fā)、網(wǎng)站優(yōu)化、網(wǎng)站認證、建德ssl等。為成百上千企事業(yè)單位解決了網(wǎng)站和推廣的問題。提供周到的售前咨詢和貼心的售后服務,是有科學管理、有技術的建德網(wǎng)站制作公司

1.負索引

人們喜歡使用序列,因為當我們知道元素的順序,我們就可以按順序操作這些元素。在Python中,字符串、元組和列表是最常見的序列數(shù)據(jù)類型。我們可以使用索引訪問單個項目。與其他主流編程語言一樣,Python支持基于0的索引,在該索引中,我們在一對方括號內(nèi)使用零訪問第一個元素。此外,我們還可以使用切片對象來檢索序列的特定元素,如下面的代碼示例所示。

>>> # Positive Indexing ... numbers = [1, 2, 3, 4, 5, 6, 7, 8] ... print("First Number:", numbers[0]) ... print("First Four Numbers:", numbers[:4]) ... print("Odd Numbers:", numbers[::2]) ... First Number: 1 First Four Numbers: [1, 2, 3, 4] Odd Numbers: [1, 3, 5, 7]

但是,Python通過支持負索引而進一步走了一步。具體來說,我們可以使用-1來引用序列中的最后一個元素,并向后計數(shù)。例如,最后一個元素的索引為-2,依此類推。重要的是,負索引也可以與切片對象中的正索引一起使用。

>>> # Negative Indexing ... data_shape = (100, 50, 4) ... names = ["John", "Aaron", "Mike", "Danny"] ... hello = "Hello World!" ... ... print(data_shape[-1]) ... print(names[-3:-1]) ... print(hello[1:-1:2]) ... 4 ['Aaron', 'Mike'] el ol

2.檢查容器是否為空

容器是指可以存儲其他數(shù)據(jù)的那些容器數(shù)據(jù)類型。一些經(jīng)常使用的內(nèi)置容器是元組,列表,字典和集合。在處理這些容器時,我們經(jīng)常需要在執(zhí)行其他操作之前檢查它們是否包含任何元素。確實,我們可以檢查這些容器的長度,該長度與已存儲項目的數(shù)量相對應。當長度為零時,容器為空。下面顯示了一個簡單的示例。

if len(some_list) > 0:     # do something here when the list is not empty else:     # do something else when the list is empty

但是,這不是最好的Pythonic方式。相反,我們可以簡單地檢查容器本身,它將在容器True包含元素時進行評估。盡管以下代碼向您展示了主要的容器數(shù)據(jù)類型,但這種用法也可以應用于字符串(即,任何非空字符串都是True)。

>>> def check_container_empty(container): ...     if container: ...         print(f"{container} has elements.") ...     else: ...         print(f"{container} doesn't have elements.") ... ... check_container_empty([1, 2, 3]) ... check_container_empty(set()) ... check_container_empty({"zero": 0, "one": 1}) ... check_container_empty(tuple()) ... [1, 2, 3] has elements. set() doesn't have elements. {'zero': 0, 'one': 1} has elements. () doesn't have elements.

3.使用Split()創(chuàng)建字符串列表

我們經(jīng)常使用字符串作為特定對象的標識符。例如,我們可以使用字符串作為字典中的鍵。在數(shù)據(jù)科學項目中,字符串通常是數(shù)據(jù)的列名。選擇多個列時,不可避免地需要創(chuàng)建一個字符串列表。確實,我們可以使用列表中的文字創(chuàng)建字符串。但是,我們必須編寫成對的引號將每個字符串括起來,這對于“懶惰”的人來說有點繁瑣。因此,我更喜歡利用字符串的split()方法來創(chuàng)建字符串列表,如下面的代碼片段所示。

>>> # List of strings ... # The typical way ... columns = ['name', 'age', 'gender', 'address', 'account_type'] ... print("* Literals:", columns) ... ... # Do this instead ... columns = 'name age gender address account_type'.split() ... print("* Split with spaces:", columns) ... ... # If the strings contain spaces, you can use commas instead ... columns = 'name, age, gender, address, account type'.split(', ') ... print("* Split with commas:", columns) ... * Literals: ['name', 'age', 'gender', 'address', 'account_type'] * Split with spaces: ['name', 'age', 'gender', 'address', 'account_type'] * Split with commas: ['name', 'age', 'gender', 'address', 'account type']

如上所示,split()默認情況下,該方法使用空格作為分隔符,并根據(jù)字符串創(chuàng)建字符串列表。值得注意的是,當您創(chuàng)建包含某些包含空格的元素的字符串列表時,可以選擇使用其他類型的分隔符(例如,逗號)。

這種用法受到一些內(nèi)置功能的啟發(fā)。例如,當你創(chuàng)建一個元組類,我們可以這樣做:Student = namedtuple(“Student”, [“name”,  “gender”, “age”])。字符串列表指定了元組的“屬性”。但是,也可以通過以下方式定義該類來本地支持它:Student =  namedtuple(“Student”, “name gender age”)。對于另一個實例,創(chuàng)建一個Enum類支持相同的替代解決方案。

4.三元表達

在許多用例中,我們需要根據(jù)條件定義具有特定值的變量,并且我們可以簡單地使用if ...  else語句來檢查條件。但是,它需要幾行代碼。如果僅處理一個變量的賦值,則可能需要使用三元表達式,該表達式檢查條件并僅用一行代碼即可完成賦值。此外,它的格式更短,從而使代碼更加簡潔??紤]以下示例。

# The typical way if score > 90:     reward = "1000 dollars" else:     reward = "500 dollars" # Do this instead reward = "1000 dollars" if score > 90 else "500 dollars"

有時,我們可以從已定義的函數(shù)中獲取一些數(shù)據(jù),并且可以利用這一點并編寫三元表達式的簡單操作,如下所示。

# Another possible scenario # You got a reward amount from somewhere else, but don't know if None/0 or not reward = reward_known or "500 dollars" # The above line of code is equivalent to below reward = reward_known if reward_known else "500 dollars"

5.帶文件對象的語句

我們經(jīng)常需要從文件讀取數(shù)據(jù)并將數(shù)據(jù)寫入文件。最常見的方法是使用內(nèi)置open()函數(shù)簡單地打開文件,該函數(shù)會創(chuàng)建一個我們可以操作的文件對象。

>>> # Create a text file that has the text: Hello World! ... ... # Open the file and append some new data ... text_file0 = open("hello_world.txt", "a") ... text_file0.write("Hello Python!") ... ... # Open the file again for something else ... text_file1 = open("hello_world.txt") ... print(text_file1.read()) ... Hello World!

在前面的代碼片段中,我們從一個文本文件開始,該文件的文本為“ Hello  World!”。然后,我們將一些新數(shù)據(jù)附加到文件中。但是,過了一會兒,我們想再次處理該文件。當我們讀取文本文件時,它仍然具有舊數(shù)據(jù)。換句話說,附加的文本不包括在文本文件中。

這是因為我們首先沒有關閉文件對象。如果不關閉文件,則無法保存更改。確實,我們可以close()在文件對象上顯式調(diào)用該方法。但是,我們可以使用“  with”語句執(zhí)行此操作,該語句將自動為我們關閉文件對象,如下所示。完成對文件的操作后,我們可以通過訪問文件對象的closed屬性來驗證文件已關閉。

>>> with open("hello_world.txt", "a") as file: ...     file.write("Hello Python!") ... ... with open("hello_world.txt") as file: ...     print(file.read()) ... ... print("Is file close?", file.closed) ... Hello World!Hello Python!Hello Python! Is file close? True

用更籠統(tǒng)的術語來說,with語句是在Python中使用上下文管理器的語法。上一個示例涉及文件操作,因為這些文件是共享資源,我們負責釋放這些資源。上下文管理器可以幫助我們完成工作。如前所示,文件操作結(jié)束后,將使用with語句自動關閉文件。

6.評估多個條件

通常,我們需要評估多個條件。有幾種可能的方案。對于數(shù)值,我們可以對同一變量進行多次比較。在這種情況下,我們可以鏈接這些比較。

# Multiple Comparisons # The typical way if a < 4 and a > 1:     # do something here# Do this instead if 1 < a < 4:     # do somerthing here

在其他一些情況下,我們可以進行多個相等比較,并且可以使用以下in關鍵字進行成員測試。

# The typical way if b == "Mon" or b == "Wed" or b == "Fri" or b == "Sun":     # do something here# Do this instead, you can also specify a tuple ("Mon", "Wed", "Fri", "Sun") if b in "Mon Wed Fri Sun".split():     # do something here

另一種技術是使用內(nèi)置的all()和any()函數(shù)用于評估多個條件的功能。具體而言,該all()函數(shù)將評估何時迭代中的元素全部為True,因此該函數(shù)適合于替換一系列AND邏輯比較。另一方面,該any()函數(shù)的計算結(jié)果為True當?shù)械娜魏卧貫門rue,因此適合替換一系列OR邏輯運算。相關示例如下所示。

# The typical ways if a < 10 and b > 5 and c == 4:     # do somethingif a < 10 or b > 5 or c == 4:     # do something# Do these instead if all([a < 10, b > 5, c == 4]):     # do somethingif any([a < 10, b > 5, c == 4]):     # do something

7.在函數(shù)聲明中使用默認值

在幾乎所有的Python項目中,大多數(shù)代碼都涉及創(chuàng)建和調(diào)用函數(shù)。換句話說,我們不斷處理函數(shù)聲明和重構。在許多情況下,我們需要多次調(diào)用一個函數(shù)。根據(jù)不同的參數(shù)集,該功能將略有不同。但是,有時一組參數(shù)可能比其他一組更常用,在這種情況下,我們在聲明函數(shù)時應考慮設置默認值??紤]下面的簡單示例。

# The original form: def generate_plot(data, image_name):     """This function creates a scatter plot for the data"""     # create the plot based on the data     ...     if image_name:         # save the image         ...# In many cases, we don't need to save the image generate_plot(data, None)# The one with a default value def generate_plot(data, image_name=None):     pass# Now, we can omit the second parameter generate_plot(data)

要注意的一件事是,如果在設置默認值時要處理可變數(shù)據(jù)類型(例如列表,集合),請確保使用None而不是構造函數(shù)(例如arg_name =  [])。由于Python在定義的位置創(chuàng)建函數(shù)對象,因此提供的空白列表將被函數(shù)對象“卡住”。換句話說,調(diào)用函數(shù)對象時不會立即創(chuàng)建它。相反,我們將在內(nèi)存中處理相同的函數(shù)對象,包括其最初創(chuàng)建的默認可變對象,這可能會導致意外行為。

8.使用計數(shù)器進行元素計數(shù)

當我們在列表、元組或字符串中有多個項目時(例如,多個字符),我們經(jīng)常想計算每項中有多少個元素。為此,可以為此功能編寫一些乏味的代碼。

>>> words = ['an', 'boy', 'girl', 'an', 'boy', 'dog', 'cat', 'Dog', 'CAT', 'an','GIRL', 'AN', 'dog', 'cat', 'cat', 'bag', 'BAG', 'BOY', 'boy', 'an'] ... unique_words = {x.lower() for x in set(words)} ... for word in unique_words: ...     print(f"* Count of {word}: {words.count(word)}") ... * Count of cat: 3 * Count of bag: 1 * Count of boy: 3 * Count of dog: 2 * Count of an: 5 * Count of girl: 1

如上所示,我們首先必須創(chuàng)建一個僅包含唯一單詞的集合。然后,我們迭代單詞集,并使用該count()方法找出每個單詞的出現(xiàn)情況。但是,有一種更好的方法可以使用Counter類來完成此計數(shù)任務。

>>> from collections import Counter ... ... word_counter = Counter(x.lower() for x in words) ... print("Word Counts:", word_counter) ... Word Counts: Counter({'an': 5, 'boy': 4, 'cat': 4, 'dog': 3, 'girl': 2, 'bag': 2})

該計數(shù)器類是在collections模塊中可用的。要使用該類,我們只需創(chuàng)建一個generator:,x.lower() for x in  words每個項目都將被計數(shù)。如我們所見,Counter對象是類似dict的映射對象,每個鍵對應于單詞列表的唯一項,而值是這些項的計數(shù)。

此外,如果我們有興趣找出單詞列表中最頻繁出現(xiàn)的項目,我們可以利用Counter對象的most_common()方法。以下代碼展示了這種用法。我們只需要指定一個整數(shù)(N),即可從列表中找出最頻繁的N個項目。附帶說明,該對象還將與其他序列數(shù)據(jù)一起使用,例如字符串和元組。

>>> # Find out the most common item ... print("Most Frequent:", word_counter.most_common(1)) Most Frequent: [('an', 5)] >>> # Find out the most common 2 items ... print("Most Frequent:", word_counter.most_common(2)) Most Frequent: [('an', 5), ('boy', 4)]

9.按不同的訂單要求排序

在許多項目中,對列表中的項目進行排序是一項普遍的任務。最基本的排序基于數(shù)字或字母順序,我們可以使用內(nèi)置sorted()函數(shù)。默認情況下,該sorted()函數(shù)將按升序?qū)α斜磉M行排序(實際上,它可以是可迭代的)。如果將reverse參數(shù)指定為True,則可以按降序獲得項目。一些簡單的用法如下所示。

>>> # A list of numbers and strings ... numbers = [1, 3, 7, 2, 5, 4] ... words = ['yay', 'bill', 'zen', 'del'] ... # Sort them ... print(sorted(numbers)) ... print(sorted(words)) ... [1, 2, 3, 4, 5, 7] ['bill', 'del', 'yay', 'zen'] >>> # Sort them in descending order ... print(sorted(numbers, reverse=True)) ... print(sorted(words, reverse=True)) ... [7, 5, 4, 3, 2, 1] ['zen', 'yay', 'del', 'bill']

除了這些基本用法外,我們還可以指定key參數(shù),以便可以對復雜項進行排序,例如元組列表??紤]這種情況的以下示例。

>>> # Create a list of tuples ... grades = [('John', 95), ('Aaron', 99), ('Zack', 97), ('Don', 92), ('Jennifer', 100), ('Abby', 94), ('Zoe', 99), ('Dee', 93)] >>> # Sort by the grades, descending ... sorted(grades, key=lambda x: x[1], reverse=True) [('Jennifer', 100), ('Aaron', 99), ('Zoe', 99), ('Zack', 97), ('John', 95), ('Abby', 94), ('Dee', 93), ('Don', 92)] >>> # Sort by the name's initial letter, ascending ... sorted(grades, key=lambda x: x[0][0]) [('Aaron', 99), ('Abby', 94), ('Don', 92), ('Dee', 93), ('John', 95), ('Jennifer', 100), ('Zack', 97), ('Zoe', 99)]

上面的代碼通過利用傳遞給key參數(shù)的lambda函數(shù),向我們展示了兩個高級排序的示例。第一個使用降序?qū)椖窟M行排序,第二個使用默認的升序?qū)椖窟M行排序。我們要結(jié)合這兩個要求,如果考慮使用該reverse參數(shù),則可能會得到一個錯誤的排序樹,因為如果嘗試按多個條件進行排序,則反向參數(shù)將適用于所有參數(shù)。請參見下面的代碼段。

>>> # Requirement: sort by name initial ascending, and by grades, descending ... # Both won't work ... sorted(grades, key=lambda x: (x[0][0], x[1]), reverse=True) [('Zoe', 99), ('Zack', 97), ('Jennifer', 100), ('John', 95), ('Dee', 93), ('Don', 92), ('Aaron', 99), ('Abby', 94)] >>> sorted(grades, key=lambda x: (x[0][0], x[1]), reverse=False) [('Abby', 94), ('Aaron', 99), ('Don', 92), ('Dee', 93), ('John', 95), ('Jennifer', 100), ('Zack', 97), ('Zoe', 99)] >>> # This will do the trick ... sorted(grades, key=lambda x: (x[0][0], -x[1])) [('Aaron', 99), ('Abby', 94), ('Dee', 93), ('Don', 92), ('Jennifer', 100), ('John', 95), ('Zoe', 99), ('Zack', 97)]

如您所見,通過將reverse參數(shù)設置為True或False,都無效。取而代之的是,技巧是取反分數(shù),因此,當您按默認的升序排序時,由于這些值的取反,分數(shù)將反向排序。但是,此方法有一個警告,因為取反只能用于數(shù)字值,而不能用于字符串。

10.不要忘記defaultdict

字典是一種有效的數(shù)據(jù)類型,它使我們能夠以鍵值對的形式存儲數(shù)據(jù)。它要求所有鍵都是可哈希的,存儲這些數(shù)據(jù)可能涉及哈希表的使用。這種方法允許以O(1)效率實現(xiàn)數(shù)據(jù)檢索和插入。但是,應注意,除了內(nèi)置的dict類型外,我們還有其他可用的字典。其中,我想討論defaultdict類型。與內(nèi)置dict類型不同,defaultdict允許我們設置默認工廠函數(shù),該工廠函數(shù)在鍵不存在時創(chuàng)建元素。

>>> student = {'name': "John", 'age': 18} ... student['gender'] ... Traceback (most recent call last):   File "<input>", line 2, in <module> KeyError: 'gender'

假設我們正在處理單詞,并且想要將與列表相同的字符分組,并且這些列表與作為鍵的字符相關聯(lián)。這是使用內(nèi)置dict類型的幼稚實現(xiàn)。值得注意的是,檢查dict對象是否具有l(wèi)etter鍵是至關重要的,因為如果鍵不存在,則調(diào)用該append()方法會引發(fā)KeyError異常。

>>> letters = ["a", "a", "c", "d", "d", "c", "a", "b"] ... final_dict = {} ... for letter in letters: ...     if letter not in final_dict: ...         final_dict[letter] = [] ...     final_dict[letter].append(letter) ... ... print("Final Dict:", final_dict) ... Final Dict: {'a': ['a', 'a', 'a'], 'c': ['c', 'c'], 'd': ['d', 'd'], 'b': ['b']}

讓我們看看如何使用defaultdict編寫更簡潔的代碼。盡管該示例很簡單,但是它只是為我們提供了有關defaultdict類的一些想法,這使我們不必處理字典對象中不存在的鍵。

>>> from collections import defaultdict ... ... final_defaultdict = defaultdict(list) ... for letter in letters: ...     final_defaultdict[letter].append(letter) ... ... print("Final Default Dict:", final_defaultdict) ... Final Default Dict: defaultdict(<class 'list'>, {'a': ['a', 'a', 'a'], 'c': ['c', 'c'], 'd': ['d', 'd'], 'b': ['b']})

到此,相信大家對“加速Python編程的小技巧有哪些”有了更深的了解,不妨來實際操作一番吧!這里是創(chuàng)新互聯(lián)網(wǎng)站,更多相關內(nèi)容可以進入相關頻道進行查詢,關注我們,繼續(xù)學習!

文章題目:加速Python編程的小技巧有哪些
本文路徑:http://aaarwkj.com/article48/pccjhp.html

成都網(wǎng)站建設公司_創(chuàng)新互聯(lián),為您提供定制開發(fā)網(wǎng)站收錄、網(wǎng)站設計網(wǎng)站導航、App設計商城網(wǎng)站

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)

成都網(wǎng)頁設計公司
丰满少妇诱惑在线观看| 91精品人妻互换一区二区| 亚洲少妇精品视频在线 | 国产91人妻精品一区二区三区| 欧美特黄高清在线观看| 久久亚洲女同第一区综合| 国产91九色视频在线| 久久中文字幕av一区| 国产一区二区三区性色| 欧美日韩美足一区二区| 欧美一区二区男人天堂| 九九九热视频这里只有精品| 亚洲国产剧情中文字幕| 欧美精品在线高清观看| 九九九热在线免费视频| 久久成人免费在线电影| 亚洲欧美一级二级三级| 婷婷中文字幕在线视频| 亚洲精品一区二区日本| 久久伊人69日韩精品| 国产精品国产亚洲精品| 天天操操操操操操夜夜爽| 日本一区二区免费视频| 日本免费一区二区三区等视频| 亚洲av粉色一区二区三区| 十八岁毛片一区二区三区| 日韩精品二区在线观看| 国产精品国产不卡在线| 日本东京热二三四区不卡免费的| 妇女自拍偷自拍亚洲精品| 中文字幕一区二区三区久久| 日本免费91午夜视频| 亚洲女同另类在线播放视频| 在线一区免费视频播放| 亚洲国产日韩精品久久| 精品人妻一区二区三区| 国产国产乱老熟视频网站| av国产一区二区在线| 亚洲香蕉在线视频免费| 视频一区二区三区拍拍| 好吊视频在线免费观看|