欧美一级特黄大片做受成人-亚洲成人一区二区电影-激情熟女一区二区三区-日韩专区欧美专区国产专区

nosql數(shù)據(jù)庫優(yōu)缺點,簡述no sql數(shù)據(jù)庫的優(yōu)缺點

nosql數(shù)據(jù)庫的幾大類型

1. 鍵值數(shù)據(jù)庫

企業(yè)建站必須是能夠以充分展現(xiàn)企業(yè)形象為主要目的,是企業(yè)文化與產(chǎn)品對外擴展宣傳的重要窗口,一個合格的網(wǎng)站不僅僅能為公司帶來巨大的互聯(lián)網(wǎng)上的收集和信息發(fā)布平臺,成都創(chuàng)新互聯(lián)面向各種領(lǐng)域:火鍋店設(shè)計網(wǎng)站設(shè)計、成都全網(wǎng)營銷推廣解決方案、網(wǎng)站設(shè)計等建站排名服務(wù)。


相關(guān)產(chǎn)品:Redis、Riak、SimpleDB、Chordless、Scalaris、Memcached

應(yīng)用:內(nèi)容緩存

優(yōu)點:擴展性好、靈活性好、大量寫操作時性能高

缺點:無法存儲結(jié)構(gòu)化信息、條件查詢效率較低

使用者:百度云(Redis)、GitHub(Riak)、BestBuy(Riak)、Twitter(Ridis和Memcached)

2. 列族數(shù)據(jù)庫

相關(guān)產(chǎn)品:BigTable、HBase、Cassandra、HadoopDB、GreenPlum、PNUTS

應(yīng)用:分布式數(shù)據(jù)存儲與管理

優(yōu)點:查找速度快、可擴展性強、容易進行分布式擴展、復(fù)雜性低

使用者:Ebay(Cassandra)、Instagram(Cassandra)、NASA(Cassandra)、Facebook(HBase)

3. 文檔數(shù)據(jù)庫

相關(guān)產(chǎn)品:MongoDB、CouchDB、ThruDB、CloudKit、Perservere、Jackrabbit

應(yīng)用:存儲、索引并管理面向文檔的數(shù)據(jù)或者類似的半結(jié)構(gòu)化數(shù)據(jù)

優(yōu)點:性能好、靈活性高、復(fù)雜性低、數(shù)據(jù)結(jié)構(gòu)靈活

缺點:缺乏統(tǒng)一的查詢語言

使用者:百度云數(shù)據(jù)庫(MongoDB)、SAP(MongoDB)

4. 圖形數(shù)據(jù)庫

圖形數(shù)據(jù)庫-使用圖作為數(shù)據(jù)模型來存儲數(shù)據(jù)。

相關(guān)產(chǎn)品:Neo4J、OrientDB、InfoGrid、GraphDB

應(yīng)用:大量復(fù)雜、互連接、低結(jié)構(gòu)化的圖結(jié)構(gòu)場合,如社交網(wǎng)絡(luò)、推薦系統(tǒng)等

優(yōu)點:靈活性高、支持復(fù)雜的圖形算法、可用于構(gòu)建復(fù)雜的關(guān)系圖譜

缺點:復(fù)雜性高、只能支持一定的數(shù)據(jù)規(guī)模

使用者:Adobe(Neo4J)、Cisco(Neo4J)、T-Mobile(Neo4J)

NoSQL在少量數(shù)據(jù)的存儲上,與傳統(tǒng)關(guān)系型數(shù)據(jù)庫相比有什么劣勢嗎?

個人不認為nosql在少量數(shù)據(jù)存儲上有啥優(yōu)勢。nosql主要解決的是auto sharding的問題,你不需要sharding,搞啥nosql. 作者:方圓 鏈接:

NoSQL數(shù)據(jù)庫是否意味著缺乏安全性?

NoSQL薄弱的安全性會給企業(yè)帶來負面影響 。Imperva公司創(chuàng)始人兼CTO Amichai Shulman如是說。在新的一年中,無疑會有更多企業(yè)開始或籌劃部署NoSQL。方案落實后就會逐漸發(fā)現(xiàn)種種安全問題,因此早做準備才是正確的選擇。 作為傳統(tǒng)關(guān)系型數(shù)據(jù)庫的替代方案,NoSQL在查詢中并不使用SQL語言,而且允許用戶隨時變更數(shù)據(jù)屬性。此類數(shù)據(jù)庫以擴展性良好著稱,并能夠在需要大量應(yīng)用程序與數(shù)據(jù)庫本身進行實時交互的交易處理任務(wù)中發(fā)揮性能優(yōu)勢,Couchbase創(chuàng)始人兼產(chǎn)品部門高級副總裁James Phillips解釋稱:NoSQL以交易業(yè)務(wù)為核心。它更注重實時處理能力并且擅長直接對數(shù)據(jù)進行操作,大幅度促進了交互型軟件系統(tǒng)的發(fā)展。Phillips指出。其中最大的優(yōu)勢之一是能夠隨時改變(在屬性方面),由于結(jié)構(gòu)性的弱化,修改過程非常便捷。 NoSQL最大優(yōu)勢影響其安全性 NoSQL的關(guān)鍵性特色之一是其動態(tài)的數(shù)據(jù)模型,Shulman解釋道。我可以在其運作過程中加入新的屬性記錄。因此與這種結(jié)構(gòu)相匹配的安全模型必須具備一定的前瞻性規(guī)劃。也就是說,它必須能夠了解數(shù)據(jù)庫引入的新屬性將引發(fā)哪些改變,以及新加入的屬性擁有哪些權(quán)限。然而這個層面上的安全概念目前尚不存在,根本沒有這樣的解決方案。 根據(jù)Phillips的說法,某些NoSQL開發(fā)商已經(jīng)開始著手研發(fā)安全機制,至少在嘗試保護數(shù)據(jù)的完整性。在關(guān)系型數(shù)據(jù)庫領(lǐng)域,如果我們的數(shù)據(jù)組成不正確,那么它將無法與結(jié)構(gòu)并行運作,換言之數(shù)據(jù)插入操作整體將宣告失敗。目前各種驗證規(guī)則與完整性檢查已經(jīng)比較完善,而事實證明這些驗證機制都能在NoSQL中發(fā)揮作用。我們與其他人所推出的解決方案類似,都會在插入一條新記錄或是文檔型規(guī)則時觸發(fā),并在執(zhí)行過程中確保插入數(shù)據(jù)的正確性。 Shulman預(yù)計新用戶很快將在配置方面捅出大婁子,這并非因為IT工作人員的玩忽職守,實際上主要原因是NoSQL作為一項新技術(shù)導致大多數(shù)人對其缺乏足夠的知識基礎(chǔ)。Application Security研發(fā)部門TeamSHATTER的經(jīng)理Alex Rothacker對上述觀點表示贊同。他指出,培訓的一大問題在于,大多數(shù)NoSQL的從業(yè)者往往屬于新生代IT人士,他們對于技術(shù)了解較多,但往往缺乏足夠的安全管理經(jīng)驗。 如果他們從傳統(tǒng)關(guān)系型數(shù)據(jù)庫入手,那么由于強制性安全機制的完備,他們可以在使用中學習。但NoSQL,只有行家才能通過觀察得出正確結(jié)論,并在大量研究工作后找到一套完備的安全解決方案。因此可能有90%的從業(yè)者由于知識儲備、安全經(jīng)驗或是工作時間的局限而無法做到這一點。 NoSQL需在安全性方面進行優(yōu)化 盡管Phillips認同新技術(shù)與舊經(jīng)驗之間存在差異,但企業(yè)在推廣NoSQL時加大對安全性的關(guān)注會起到很大程度的積極作用。他認為此類數(shù)據(jù)存儲機制與傳統(tǒng)關(guān)系類數(shù)據(jù)庫相比,其中包含著的敏感類信息更少,而且與企業(yè)網(wǎng)絡(luò)內(nèi)部其它應(yīng)用程序的接觸機會也小得多。 他們并不把這項新技術(shù)完全當成數(shù)據(jù)庫使用,正如我們在收集整理大量來自其它應(yīng)用程序的業(yè)務(wù)類數(shù)據(jù)時,往往也會考慮將其作為企業(yè)數(shù)據(jù)存儲機制一樣,他補充道。當然,如果我打算研發(fā)一套具備某種特定功能的社交網(wǎng)絡(luò)、社交游戲或是某種特殊web應(yīng)用程序,也很可能會將其部署于防火墻之下。這樣一來它不僅與應(yīng)用程序緊密結(jié)合,也不會被企業(yè)中的其它部門所觸及。 但Rothacker同時表示,這種過度依賴周邊安全機制的數(shù)據(jù)庫系統(tǒng)也存在著極其危險的漏洞。一旦系統(tǒng)完全依附于周邊安全模型,那么驗證機制就必須相對薄弱,而且缺乏多用戶管理及數(shù)據(jù)訪問方面的安全保護。只要擁有高權(quán)限賬戶,我們幾乎能訪問存儲機制中的一切數(shù)據(jù)。舉例來說,Brian Sullivan就在去年的黑帽大會上演示了如何在完全不清楚數(shù)據(jù)具體內(nèi)容的情況下,將其信息羅列出來甚至導出。 而根據(jù)nCircle公司CTO Tim ‘TK’ Keanini的觀點,即使是與有限的應(yīng)用程序相關(guān)聯(lián),NoSQL也很有可能被暴露在互聯(lián)網(wǎng)上。在缺少嚴密網(wǎng)絡(luò)劃分的情況下,它可能成為攻擊者窺探存儲數(shù)據(jù)的薄弱環(huán)節(jié)。因為NoSQL在設(shè)計上主要用于互聯(lián)網(wǎng)規(guī)模的部署,所以它很可能被直接連接到互聯(lián)網(wǎng)中,進而面臨大量攻擊行為。 其中發(fā)生機率最高的攻擊行為就是注入式攻擊,這也是一直以來肆虐于關(guān)系類數(shù)據(jù)庫領(lǐng)域的頭號公敵。盡管NoSQL沒有將SQL作為查詢語言,也并不代表它能夠免受注入式攻擊的威脅。雖然不少人宣稱SQL注入在NoSQL這邊不起作用,但其中的原理是完全一致的。攻擊者需要做的只是改變自己注入內(nèi)容的語法形式,Rothacker解釋稱。也就是說雖然SQL注入不會出現(xiàn),但JavaScript注入或者JSON注入同樣能威脅安全。 此外,攻擊者在籌劃對這類數(shù)據(jù)庫展開侵襲時,也很可能進一步優(yōu)化自己的工具。不成熟的安全技術(shù)往往帶來這樣的窘境:需要花費大量時間學習如何保障其安全,但幾乎每個IT人士都能迅速掌握攻擊活動的組織方法。因此我認為攻擊者將會始終走在安全部署的前面,Shulman說道。遺憾的是搞破壞總比防范工作更容易,而我們已經(jīng)看到不少NoSQL技術(shù)方面的公開漏洞,尤其是目前引起熱議的、以JSON注入為載體的攻擊方式。 NoSQL安全性并非其阻礙 然而,這一切都不應(yīng)該成為企業(yè)使用NoSQL的阻礙,他總結(jié)道。我認為歸根結(jié)底,這應(yīng)該算是企業(yè)的一種商業(yè)決策。只要這種選擇能夠帶來吸引力巨大的商業(yè)機遇,就要承擔一定風險,Shulman解釋道。但應(yīng)該采取一定措施以盡量弱化這種風險。 舉例來說,鑒于數(shù)據(jù)庫對外部安全機制的依賴性,Rothacker建議企業(yè)積極考慮引入加密方案。他警告稱,企業(yè)必須對與NoSQL相對接的應(yīng)用程序代碼仔細檢查。換言之,企業(yè)必須嚴格挑選負責此類項目部署的人選,確保將最好的人才用于這方面事務(wù),Shulman表示。當大家以NoSQL為基礎(chǔ)編寫應(yīng)用程序時,必須啟用有經(jīng)驗的編程人員,因為客戶端軟件是抵擋安全問題的第一道屏障。切實為額外緩沖區(qū)的部署留出時間與預(yù)算,這能夠讓員工有閑暇反思自己的工作內(nèi)容并盡量多顧及安全考量多想一點就是進步。綜上所述,這可能與部署傳統(tǒng)的關(guān)系類數(shù)據(jù)庫也沒什么不同。 具有諷刺意味的是,近年來數(shù)據(jù)庫應(yīng)用程序在安全性方面的提升基本都跟數(shù)據(jù)庫本身沒什么關(guān)系,nCircle公司安全研究及開發(fā)部門總監(jiān)Oliver Lavery如是說。

目前哪些NoSQL數(shù)據(jù)庫應(yīng)用廣泛,各有什么特點

特點:

它們可以處理超大量的數(shù)據(jù)。

它們運行在便宜的PC服務(wù)器集群上。

PC集群擴充起來非常方便并且成本很低,避免了“sharding”操作的復(fù)雜性和成本。

它們擊碎了性能瓶頸。

NoSQL的支持者稱,通過NoSQL架構(gòu)可以省去將Web或Java應(yīng)用和數(shù)據(jù)轉(zhuǎn)換成SQL友好格式的時間,執(zhí)行速度變得更快。

“SQL并非適用于所有的程序代碼,” 對于那些繁重的重復(fù)操作的數(shù)據(jù),SQL值得花錢。但是當數(shù)據(jù)庫結(jié)構(gòu)非常簡單時,SQL可能沒有太大用處。

沒有過多的操作。

雖然NoSQL的支持者也承認關(guān)系數(shù)據(jù)庫提供了無可比擬的功能集合,而且在數(shù)據(jù)完整性上也發(fā)揮絕對穩(wěn)定,他們同時也表示,企業(yè)的具體需求可能沒有那么多。

Bootstrap支持

因為NoSQL項目都是開源的,因此它們?nèi)狈?yīng)商提供的正式支持。這一點它們與大多數(shù)開源項目一樣,不得不從社區(qū)中尋求支持。

優(yōu)點:

易擴展

NoSQL數(shù)據(jù)庫種類繁多,但是一個共同的特點都是去掉關(guān)系數(shù)據(jù)庫的關(guān)系型特性。數(shù)據(jù)之間無關(guān)系,這樣就非常容易擴展。也無形之間,在架構(gòu)的層面上帶來了可擴展的能力。

大數(shù)據(jù)量,高性能

NoSQL數(shù)據(jù)庫都具有非常高的讀寫性能,尤其在大數(shù)據(jù)量下,同樣表現(xiàn)優(yōu)秀。這得益于它的無關(guān)系性,數(shù)據(jù)庫的結(jié)構(gòu)簡單。一般MySQL使用 Query Cache,每次表的更新Cache就失效,是一種大粒度的Cache,在針對web2.0的交互頻繁的應(yīng)用,Cache性能不高。而NoSQL的 Cache是記錄級的,是一種細粒度的Cache,所以NoSQL在這個層面上來說就要性能高很多了。

靈活的數(shù)據(jù)模型

NoSQL無需事先為要存儲的數(shù)據(jù)建立字段,隨時可以存儲自定義的數(shù)據(jù)格式。而在關(guān)系數(shù)據(jù)庫里,增刪字段是一件非常麻煩的事情。如果是非常大數(shù)據(jù)量的表,增加字段簡直就是一個噩夢。這點在大數(shù)據(jù)量的web2.0時代尤其明顯。

高可用

NoSQL在不太影響性能的情況,就可以方便的實現(xiàn)高可用的架構(gòu)。比如Cassandra,HBase模型,通過復(fù)制模型也能實現(xiàn)高可用。

主要應(yīng)用:

Apache HBase

這個大數(shù)據(jù)管理平臺建立在谷歌強大的BigTable管理引擎基礎(chǔ)上。作為具有開源、Java編碼、分布式多個優(yōu)勢的數(shù)據(jù)庫,Hbase最初被設(shè)計應(yīng)用于Hadoop平臺,而這一強大的數(shù)據(jù)管理工具,也被Facebook采用,用于管理消息平臺的龐大數(shù)據(jù)。

Apache Storm

用于處理高速、大型數(shù)據(jù)流的分布式實時計算系統(tǒng)。Storm為Apache Hadoop添加了可靠的實時數(shù)據(jù)處理功能,同時還增加了低延遲的儀表板、安全警報,改進了原有的操作方式,幫助企業(yè)更有效率地捕獲商業(yè)機會、發(fā)展新業(yè)務(wù)。

Apache Spark

該技術(shù)采用內(nèi)存計算,從多迭代批量處理出發(fā),允許將數(shù)據(jù)載入內(nèi)存做反復(fù)查詢,此外還融合數(shù)據(jù)倉庫、流處理和圖計算等多種計算范式,Spark用Scala語言實現(xiàn),構(gòu)建在HDFS上,能與Hadoop很好的結(jié)合,而且運行速度比MapReduce快100倍。

Apache Hadoop

該技術(shù)迅速成為了大數(shù)據(jù)管理標準之一。當它被用來管理大型數(shù)據(jù)集時,對于復(fù)雜的分布式應(yīng)用,Hadoop體現(xiàn)出了非常好的性能,平臺的靈活性使它可以運行在商用硬件系統(tǒng),它還可以輕松地集成結(jié)構(gòu)化、半結(jié)構(gòu)化和甚至非結(jié)構(gòu)化數(shù)據(jù)集。

Apache Drill

你有多大的數(shù)據(jù)集?其實無論你有多大的數(shù)據(jù)集,Drill都能輕松應(yīng)對。通過支持HBase、Cassandra和MongoDB,Drill建立了交互式分析平臺,允許大規(guī)模數(shù)據(jù)吞吐,而且能很快得出結(jié)果。

Apache Sqoop

也許你的數(shù)據(jù)現(xiàn)在還被鎖定于舊系統(tǒng)中,Sqoop可以幫你解決這個問題。這一平臺采用并發(fā)連接,可以將數(shù)據(jù)從關(guān)系數(shù)據(jù)庫系統(tǒng)方便地轉(zhuǎn)移到Hadoop中,可以自定義數(shù)據(jù)類型以及元數(shù)據(jù)傳播的映射。事實上,你還可以將數(shù)據(jù)(如新的數(shù)據(jù))導入到HDFS、Hive和Hbase中。

Apache Giraph

這是功能強大的圖形處理平臺,具有很好可擴展性和可用性。該技術(shù)已經(jīng)被Facebook采用,Giraph可以運行在Hadoop環(huán)境中,可以將它直接部署到現(xiàn)有的Hadoop系統(tǒng)中。通過這種方式,你可以得到強大的分布式作圖能力,同時還能利用上現(xiàn)有的大數(shù)據(jù)處理引擎。

Cloudera Impala

Impala模型也可以部署在你現(xiàn)有的Hadoop群集上,監(jiān)視所有的查詢。該技術(shù)和MapReduce一樣,具有強大的批處理能力,而且Impala對于實時的SQL查詢也有很好的效果,通過高效的SQL查詢,你可以很快的了解到大數(shù)據(jù)平臺上的數(shù)據(jù)。

Gephi

它可以用來對信息進行關(guān)聯(lián)和量化處理,通過為數(shù)據(jù)創(chuàng)建功能強大的可視化效果,你可以從數(shù)據(jù)中得到不一樣的洞察力。Gephi已經(jīng)支持多個圖表類型,而且可以在具有上百萬個節(jié)點的大型網(wǎng)絡(luò)上運行。Gephi具有活躍的用戶社區(qū),Gephi還提供了大量的插件,可以和現(xiàn)有系統(tǒng)完美的集成到一起,它還可以對復(fù)雜的IT連接、分布式系統(tǒng)中各個節(jié)點、數(shù)據(jù)流等信息進行可視化分析。

MongoDB

這個堅實的平臺一直被很多組織推崇,它在大數(shù)據(jù)管理上有極好的性能。MongoDB最初是由DoubleClick公司的員工創(chuàng)建,現(xiàn)在該技術(shù)已經(jīng)被廣泛的應(yīng)用于大數(shù)據(jù)管理。MongoDB是一個應(yīng)用開源技術(shù)開發(fā)的NoSQL數(shù)據(jù)庫,可以用于在JSON這樣的平臺上存儲和處理數(shù)據(jù)。目前,紐約時報、Craigslist以及眾多企業(yè)都采用了MongoDB,幫助他們管理大型數(shù)據(jù)集。(Couchbase服務(wù)器也作為一個參考)。

十大頂尖公司:

Amazon Web Services

Forrester將AWS稱為“云霸主”,談到云計算領(lǐng)域的大數(shù)據(jù),那就不得不提到亞馬遜。該公司的Hadoop產(chǎn)品被稱為EMR(Elastic Map Reduce),AWS解釋這款產(chǎn)品采用了Hadoop技術(shù)來提供大數(shù)據(jù)管理服務(wù),但它不是純開源Hadoop,經(jīng)過修改后現(xiàn)在被專門用在AWS云上。

Forrester稱EMR有很好的市場前景。很多公司基于EMR為客戶提供服務(wù),有一些公司將EMR應(yīng)用于數(shù)據(jù)查詢、建模、集成和管理。而且AWS還在創(chuàng)新,F(xiàn)orrester稱未來EMR可以基于工作量的需要自動縮放調(diào)整大小。亞馬遜計劃為其產(chǎn)品和服務(wù)提供更強大的EMR支持,包括它的RedShift數(shù)據(jù)倉庫、新公布的Kenesis實時處理引擎以及計劃中的NoSQL數(shù)據(jù)庫和商業(yè)智能工具。不過AWS還沒有自己的Hadoop發(fā)行版。

Cloudera

Cloudera有開源Hadoop的發(fā)行版,這個發(fā)行版采用了Apache Hadoop開源項目的很多技術(shù),不過基于這些技術(shù)的發(fā)行版也有很大的進步。Cloudera為它的Hadoop發(fā)行版開發(fā)了很多功能,包括Cloudera管理器,用于管理和監(jiān)控,以及名為Impala的SQL引擎等。Cloudera的Hadoop發(fā)行版基于開源Hadoop,但也不是純開源的產(chǎn)品。當Cloudera的客戶需要Hadoop不具備的某些功能時,Cloudera的工程師們就會實現(xiàn)這些功能,或者找一個擁有這項技術(shù)的合作伙伴。Forrester表示:“Cloudera的創(chuàng)新方法忠于核心Hadoop,但因為其可實現(xiàn)快速創(chuàng)新并積極滿足客戶需求,這一點使它不同于其他那些供應(yīng)商?!蹦壳?,Cloudera的平臺已經(jīng)擁有200多個付費客戶,一些客戶在Cloudera的技術(shù)支持下已經(jīng)可以跨1000多個節(jié)點實現(xiàn)對PB級數(shù)據(jù)的有效管理。

Hortonworks

和Cloudera一樣,Hortonworks是一個純粹的Hadoop技術(shù)公司。與Cloudera不同的是,Hortonworks堅信開源Hadoop比任何其他供應(yīng)商的Hadoop發(fā)行版都要強大。Hortonworks的目標是建立Hadoop生態(tài)圈和Hadoop用戶社區(qū),推進開源項目的發(fā)展。Hortonworks平臺和開源Hadoop聯(lián)系緊密,公司管理人員表示這會給用戶帶來好處,因為它可以防止被供應(yīng)商套牢(如果Hortonworks的客戶想要離開這個平臺,他們可以輕松轉(zhuǎn)向其他開源平臺)。這并不是說Hortonworks完全依賴開源Hadoop技術(shù),而是因為該公司將其所有開發(fā)的成果回報給了開源社區(qū),比如Ambari,這個工具就是由Hortonworks開發(fā)而成,用來填充集群管理項目漏洞。Hortonworks的方案已經(jīng)得到了Teradata、Microsoft、Red Hat和SAP這些供應(yīng)商的支持。

IBM

當企業(yè)考慮一些大的IT項目時,很多人首先會想到IBM。IBM是Hadoop項目的主要參與者之一,F(xiàn)orrester稱IBM已有100多個Hadoop部署,它的很多客戶都有PB級的數(shù)據(jù)。IBM在網(wǎng)格計算、全球數(shù)據(jù)中心和企業(yè)大數(shù)據(jù)項目實施等眾多領(lǐng)域有著豐富的經(jīng)驗?!癐BM計劃繼續(xù)整合SPSS分析、高性能計算、BI工具、數(shù)據(jù)管理和建模、應(yīng)對高性能計算的工作負載管理等眾多技術(shù)。”

Intel

和AWS類似,英特爾不斷改進和優(yōu)化Hadoop使其運行在自己的硬件上,具體來說,就是讓Hadoop運行在其至強芯片上,幫助用戶打破Hadoop系統(tǒng)的一些限制,使軟件和硬件結(jié)合的更好,英特爾的Hadoop發(fā)行版在上述方面做得比較好。Forrester指出英特爾在最近才推出這個產(chǎn)品,所以公司在未來還有很多改進的可能,英特爾和微軟都被認為是Hadoop市場上的潛力股。

MapR Technologies

MapR的Hadoop發(fā)行版目前為止也許是最好的了,不過很多人可能都沒有聽說過。Forrester對Hadoop用戶的調(diào)查顯示,MapR的評級最高,其發(fā)行版在架構(gòu)和數(shù)據(jù)處理能力上都獲得了最高分。MapR已將一套特殊功能融入其Hadoop發(fā)行版中。例如網(wǎng)絡(luò)文件系統(tǒng)(NFS)、災(zāi)難恢復(fù)以及高可用性功能。Forrester說MapR在Hadoop市場上沒有Cloudera和Hortonworks那樣的知名度,MapR要成為一個真正的大企業(yè),還需要加強伙伴關(guān)系和市場營銷。

Microsoft

微軟在開源軟件問題上一直很低調(diào),但在大數(shù)據(jù)形勢下,它不得不考慮讓Windows也兼容Hadoop,它還積極投入到開源項目中,以更廣泛地推動Hadoop生態(tài)圈的發(fā)展。我們可以在微軟的公共云Windows Azure HDInsight產(chǎn)品中看到其成果。微軟的Hadoop服務(wù)基于Hortonworks的發(fā)行版,而且是為Azure量身定制的。

微軟也有一些其他的項目,包括名為Polybase的項目,讓Hadoop查詢實現(xiàn)了SQLServer查詢的一些功能。Forrester說:“微軟在數(shù)據(jù)庫、數(shù)據(jù)倉庫、云、OLAP、BI、電子表格(包括PowerPivot)、協(xié)作和開發(fā)工具市場上有很大優(yōu)勢,而且微軟擁有龐大的用戶群,但要在Hadoop這個領(lǐng)域成為行業(yè)領(lǐng)導者還有很遠的路要走?!?/p>

Pivotal Software

EMC和Vmware部分大數(shù)據(jù)業(yè)務(wù)分拆組合產(chǎn)生了Pivotal。Pivotal一直努力構(gòu)建一個性能優(yōu)越的Hadoop發(fā)行版,為此,Pivotal在開源Hadoop的基礎(chǔ)上又添加了一些新的工具,包括一個名為HAWQ的SQL引擎以及一個專門解決大數(shù)據(jù)問題的Hadoop應(yīng)用。Forrester稱Pivotal Hadoop平臺的優(yōu)勢在于它整合了Pivotal、EMC、Vmware的眾多技術(shù),Pivotal的真正優(yōu)勢實際上等于EMC和Vmware兩大公司為其撐腰。到目前為止,Pivotal的用戶還不到100個,而且大多是中小型客戶。

Teradata

對于Teradata來說,Hadoop既是一種威脅也是一種機遇。數(shù)據(jù)管理,特別是關(guān)于SQL和關(guān)系數(shù)據(jù)庫這一領(lǐng)域是Teradata的專長。所以像Hadoop這樣的NoSQL平臺崛起可能會威脅到Teradata。相反,Teradata接受了Hadoop,通過與Hortonworks合作,Teradata在Hadoop平臺集成了SQL技術(shù),這使Teradata的客戶可以在Hadoop平臺上方便地使用存儲在Teradata數(shù)據(jù)倉庫中的數(shù)據(jù)。

AMPLab

通過將數(shù)據(jù)轉(zhuǎn)變?yōu)樾畔ⅲ覀儾趴梢岳斫馐澜?,而這也正是AMPLab所做的。AMPLab致力于機器學習、數(shù)據(jù)挖掘、數(shù)據(jù)庫、信息檢索、自然語言處理和語音識別等多個領(lǐng)域,努力改進對信息包括不透明數(shù)據(jù)集內(nèi)信息的甄別技術(shù)。除了Spark,開源分布式SQL查詢引擎Shark也源于AMPLab,Shark具有極高的查詢效率,具有良好的兼容性和可擴展性。近幾年的發(fā)展使計算機科學進入到全新的時代,而AMPLab為我們設(shè)想一個運用大數(shù)據(jù)、云計算、通信等各種資源和技術(shù)靈活解決難題的方案,以應(yīng)對越來越復(fù)雜的各種難題。

非關(guān)系型數(shù)據(jù)庫有哪些優(yōu)缺點?

非關(guān)系型數(shù)據(jù)庫嚴格上不是一種數(shù)據(jù)庫,應(yīng)該是一種數(shù)據(jù)結(jié)構(gòu)化存儲方法的集合,可以是文檔或者鍵值對等。當初我在黑馬程序員培訓時候就學過。

優(yōu)點:

1、格式靈活:存儲數(shù)據(jù)的格式可以是key,value形式、文檔形式、圖片形式等等,文檔形式、圖片形式等等,使用靈活,應(yīng)用場景廣泛,而關(guān)系型數(shù)據(jù)庫則只支持基礎(chǔ)類型。

2、速度快:nosql可以使用硬盤或者隨機存儲器作為載體,而關(guān)系型數(shù)據(jù)庫只能使用硬盤;

3、高擴展性;

4、成本低:nosql數(shù)據(jù)庫部署簡單,基本都是開源軟件。

缺點:

1、不提供sql支持,學習和使用成本較高;

2、無事務(wù)處理;

3、數(shù)據(jù)結(jié)構(gòu)相對復(fù)雜,復(fù)雜查詢方面稍欠。

非關(guān)系型數(shù)據(jù)庫的分類和比較:

1、文檔型

2、key-value型

3、列式數(shù)據(jù)庫

4、圖形數(shù)據(jù)庫

常見NoSQL數(shù)據(jù)庫的應(yīng)用場景是怎么樣的

文檔數(shù)據(jù)庫

源起:受Lotus Notes啟發(fā)。

數(shù)據(jù)模型:包含了key-value的文檔集合

例子:CouchDB, MongoDB

優(yōu)點:數(shù)據(jù)模型自然,編程友好,快速開發(fā),web友好,CRUD。

圖數(shù)據(jù)庫

源起: 歐拉和圖理論。

數(shù)據(jù)模型:節(jié)點和關(guān)系,也可處理鍵值對。

例子:AllegroGraph, InfoGrid, Neo4j

優(yōu)點:解決復(fù)雜的圖問題。

關(guān)系數(shù)據(jù)庫

源起: E. F. Codd 在A Relational Model of Data for Large Shared Data Banks提出的

數(shù)據(jù)模型:各種關(guān)系

例子:VoltDB, Clustrix, MySQL

優(yōu)點:高性能、可擴展的OLTP,支持SQL,物化視圖,支持事務(wù),編程友好。

對象數(shù)據(jù)庫

源起:圖數(shù)據(jù)庫研究

數(shù)據(jù)模型:對象

例子:Objectivity, Gemstone

優(yōu)點:復(fù)雜對象模型,快速鍵值訪問,鍵功能訪問,以及圖數(shù)據(jù)庫的優(yōu)點。

Key-Value數(shù)據(jù)庫

源起:Amazon的論文 Dynamo 和 Distributed HashTables。

數(shù)據(jù)模型:鍵值對

例子:Membase, Riak

優(yōu)點:處理大量數(shù)據(jù),快速處理大量讀寫請求。編程友好。

BigTable類型數(shù)據(jù)庫

源起:Google的論文 BigTable。

數(shù)據(jù)模型:列簇,每一行在理論上都是不同的

例子:HBase, Hypertable, Cassandra

優(yōu)點:處理大量數(shù)據(jù),應(yīng)對極高寫負載,高可用,支持跨數(shù)據(jù)中心, MapReduce。

數(shù)據(jù)結(jié)構(gòu)服務(wù)

源起: ?

數(shù)據(jù)模型:字典操作,lists, sets和字符串值

例子:Redis

優(yōu)點:不同于以前的任何數(shù)據(jù)庫

網(wǎng)格數(shù)據(jù)庫

源起:數(shù)據(jù)網(wǎng)格和元組空間研究。

數(shù)據(jù)模型:基于空間的架構(gòu)

例子:GigaSpaces, Coherence

優(yōu)點:適于事務(wù)處理的高性能和高擴展性

本文題目:nosql數(shù)據(jù)庫優(yōu)缺點,簡述no sql數(shù)據(jù)庫的優(yōu)缺點
轉(zhuǎn)載注明:http://aaarwkj.com/article8/dsspgip.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供網(wǎng)站設(shè)計、品牌網(wǎng)站建設(shè)、網(wǎng)站導航網(wǎng)頁設(shè)計公司做網(wǎng)站、外貿(mào)建站

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)

網(wǎng)站優(yōu)化排名
成人夜间视频在线观看| 最近最新免费成人在线视频| 五月婷婷丁香在线观看| 亚洲成人精品免费观看| 蜜臀av在线国产一区| 国产精品久久99一区| 99热视频在线观看免费| 国产剧情av专业在线观看| 亚洲男女尻逼片视频网站| 播放欧美日韩特黄大片| 日韩欧美高清一区二区| 国产精品久久高清免费| 蜜臀99久久精品久久久| 成人精品亚洲一区二区| 日韩亚洲毛片全在线播放| 日本韩国黄色三级三级| 久久久亚洲成人国产av| 男女性生活视频成年人观看| 蜜桃人妻av一区二区三区| 午夜夫妻生活视频在线观看| 最近av中文字幕电影| 一本色桃子精品久久中文字幕| 亚洲精品国产精品乱码| 久久国产精品必看狼人| 自偷自拍亚洲综合精品| 五月开心婷婷中文字幕| 欧美日韩免费r在线视频| 国产精品大片久久激情四射| 成人激情电影免费在线| 亚洲成人大片免费在线观看| 91桃色网站在线免费观看| 欧美日韩另类综合91| 亚洲不卡在线视频免费| 久久综合伊人欧美精品| 国产三级国产精品国产| 亚洲永久免费在线观看| 韩国久久久久三级成人| 日韩成人在线视频观看| 丁香婷婷激情五月天综合| 国产黄a三级三级三级老师绑| 日韩欧美精品在线不卡|