欧美一级特黄大片做受成人-亚洲成人一区二区电影-激情熟女一区二区三区-日韩专区欧美专区国产专区

分布式限流,你想知道的都在這里

2021-02-17    分類: 網(wǎng)站建設(shè)

前言

在一個高并發(fā)系統(tǒng)中對流量的把控是非常重要的,當巨大的流量直接請求到我們的服務(wù)器上沒多久就可能造成接口不可用,不處理的話甚至?xí)斐烧麄€應(yīng)用不可用。

比如最近就有個這樣的需求,我作為客戶端要向kafka生產(chǎn)數(shù)據(jù),而kafka的消費者則再源源不斷的消費數(shù)據(jù),并將消費的數(shù)據(jù)全部請求到web服務(wù)器,雖說做了負載(有4臺web服務(wù)器)但業(yè)務(wù)數(shù)據(jù)的量也是巨大的,每秒鐘可能有上萬條數(shù)據(jù)產(chǎn)生。如果生產(chǎn)者直接生產(chǎn)數(shù)據(jù)的話極有可能把web服務(wù)器拖垮。

對此就必須要做限流處理,每秒鐘生產(chǎn)一定限額的數(shù)據(jù)到kafka,這樣就能極大程度的保證web的正常運轉(zhuǎn)。

其實不管處理何種場景,本質(zhì)都是降低流量保證應(yīng)用的高可用。

常見算法

對于限流常見有兩種算法:

  • 漏桶算法
  • 令牌桶算法

漏桶算法比較簡單,就是將流量放入桶中,漏桶同時也按照一定的速率流出,如果流量過快的話就會溢出(漏桶并不會提高流出速率)。溢出的流量則直接丟棄。

如下圖所示:

分布式限流,你想知道的都在這里

這種做法簡單粗暴。

漏桶算法雖說簡單,但卻不能應(yīng)對實際場景,比如突然暴增的流量。

這時就需要用到令牌桶算法:

令牌桶會以一個恒定的速率向固定容量大小桶中放入令牌,當有流量來時則取走一個或多個令牌。當桶中沒有令牌則將當前請求丟棄或阻塞。

相比之下令牌桶可以應(yīng)對一定的突發(fā)流量。

RateLimiter實現(xiàn)

對于令牌桶的代碼實現(xiàn),可以直接使用Guava包中的RateLimiter。

  1. @Override 
  2. public BaseResponse getUserByFeignBatch(@RequestBody UserReqVO userReqVO) { 
  3.  //調(diào)用遠程服務(wù) 
  4.  OrderNoReqVO vo = new OrderNoReqVO() ; 
  5.  vo.setReqNo(userReqVO.getReqNo()); 
  6.  RateLimiter limiter = RateLimiter.create(2.0) ; 
  7.  //批量調(diào)用 
  8.  for (int i = 0 ;i< 10 ; i++){ 
  9.  double acquire = limiter.acquire(); 
  10.  logger.debug("獲取令牌成功!,消耗=" + acquire); 
  11.  BaseResponse orderNo = orderServiceClient.getOrderNo(vo); 
  12.  logger.debug("遠程返回:"+JSON.toJSONString(orderNo)); 
  13.  } 
  14.  UserRes userRes = new UserRes() ; 
  15.  userRes.setUserId(123); 
  16.  userRes.setUserName("張三"); 
  17.  userRes.setReqNo(userReqVO.getReqNo()); 
  18.  userRes.setCode(StatusEnum.SUCCESS.getCode()); 
  19.  userRes.setMessage("成功"); 
  20.  return userRes ; 

詳見此。

調(diào)用結(jié)果如下:

代碼可以看出以每秒向桶中放入兩個令牌,請求一次消耗一個令牌。所以每秒鐘只能發(fā)送兩個請求。按照圖中的時間來看也確實如此(返回值是獲取此令牌所消耗的時間,差不多也是每500ms一個)。

使用RateLimiter有幾個值得注意的地方:

允許先消費,后付款,意思就是它可以來一個請求的時候一次性取走幾個或者是剩下所有的令牌甚至多取,但是后面的請求就得為上一次請求買單,它需要等待桶中的令牌補齊之后才能繼續(xù)獲取令牌。

總結(jié)

針對于單個應(yīng)用的限流 RateLimiter 夠用了,如果是分布式環(huán)境可以借助 Redis 來完成。

來做演示。

在 Order 應(yīng)用提供的接口中采取了限流。首先是配置了限流工具的 Bean:

  1. @Configuration 
  2. public class RedisLimitConfig { 
  3.  @Value("${redis.limit}") 
  4.  private int limit; 
  5.  @Autowired 
  6.  private JedisConnectionFactory jedisConnectionFactory; 
  7.  @Bean 
  8.  public RedisLimit build() { 
  9.  RedisClusterConnection clusterConnection = jedisConnectionFactory.getClusterConnection(); 
  10.  JedisCluster jedisCluster = (JedisCluster) clusterConnection.getNativeConnection(); 
  11.  RedisLimit redisLimit = new RedisLimit.Builder<>(jedisCluster) 
  12.  .limit(limit) 
  13.  .build(); 
  14.  return redisLimit; 
  15.  } 

接著在 Controller 使用組件:

  1. @Autowired 
  2. private RedisLimit redisLimit ; 
  3. @Override 
  4. @CheckReqNo 
  5. public BaseResponse getOrderNo(@RequestBody OrderNoReqVO orderNoReq) { 
  6.  BaseResponse res = new BaseResponse(); 
  7.  //限流 
  8.  boolean limit = redisLimit.limit(); 
  9.  if (!limit){ 
  10.  res.setCode(StatusEnum.REQUEST_LIMIT.getCode()); 
  11.  res.setMessage(StatusEnum.REQUEST_LIMIT.getMessage()); 
  12.  return res ; 
  13.  } 
  14.  res.setReqNo(orderNoReq.getReqNo()); 
  15.  if (null == orderNoReq.getAppId()){ 
  16.  throw new SBCException(StatusEnum.FAIL); 
  17.  } 
  18.  OrderNoResVO orderNoRes = new OrderNoResVO() ; 
  19.  orderNoRes.setOrderId(DateUtil.getLongTime()); 
  20.  res.setCode(StatusEnum.SUCCESS.getCode()); 
  21.  res.setMessage(StatusEnum.SUCCESS.getMessage()); 
  22.  res.setDataBody(orderNoRes); 
  23.  return res ; 

為了方便使用,也提供了注解:

  1. @Override 
  2. @ControllerLimit 
  3. public BaseResponse getOrderNoLimit(@RequestBody OrderNoReqVO orderNoReq) { 
  4.  BaseResponse res = new BaseResponse(); 
  5.  // 業(yè)務(wù)邏輯 
  6.  return res ; 

該注解攔截了 http 請求,會再請求達到閾值時直接返回。

普通方法也可使用:

  1. @CommonLimit 
  2. public void doSomething(){} 

會在調(diào)用達到閾值時拋出異常。

為了模擬并發(fā),在 User 應(yīng)用中開啟了 10 個線程調(diào)用 Order(限流次數(shù)為5) 接口(也可使用專業(yè)的并發(fā)測試工具 JMeter 等)。

  1. @Override 
  2. public BaseResponse getUserByFeign(@RequestBody UserReqVO userReq) { 
  3.  //調(diào)用遠程服務(wù) 
  4.  OrderNoReqVO vo = new OrderNoReqVO(); 
  5.  vo.setAppId(1L); 
  6.  vo.setReqNo(userReq.getReqNo()); 
  7.  for (int i = 0; i < 10; i++) { 
  8.  executorService.execute(new Worker(vo, orderServiceClient)); 
  9.  } 
  10.  UserRes userRes = new UserRes(); 
  11.  userRes.setUserId(123); 
  12.  userRes.setUserName("張三"); 
  13.  userRes.setReqNo(userReq.getReqNo()); 
  14.  userRes.setCode(StatusEnum.SUCCESS.getCode()); 
  15.  userRes.setMessage("成功"); 
  16.  return userRes; 
  17. private static class Worker implements Runnable { 
  18.  private OrderNoReqVO vo; 
  19.  private OrderServiceClient orderServiceClient; 
  20.  public Worker(OrderNoReqVO vo, OrderServiceClient orderServiceClient) { 
  21.  this.vo = vo; 
  22.  this.orderServiceClient = orderServiceClient; 
  23.  } 
  24.  @Override 
  25.  public void run() { 
  26.  BaseResponse orderNo = orderServiceClient.getOrderNoCommonLimit(vo); 
  27.  logger.info("遠程返回:" + JSON.toJSONString(orderNo)); 
  28.  } 

為了驗證分布式效果啟動了兩個 Order 應(yīng)用。

效果如下:

實現(xiàn)原理

實現(xiàn)原理其實很簡單。既然要達到分布式全局限流的效果,那自然需要一個第三方組件來記錄請求的次數(shù)。

其中 Redis 就非常適合這樣的場景。

  • 每次請求時將當前時間(精確到秒)作為 Key 寫入到 Redis 中,超時時間設(shè)置為 2 秒,Redis 將該 Key 的值進行自增。
  • 當達到閾值時返回錯誤。
  • 寫入 Redis 的操作用 Lua 腳本來完成,利用 Redis 的單線程機制可以保證每個 Redis 請求的原子性。

Lua 腳本如下:

--lua 下標從 1 開始-- 限流 keylocal key = KEYS[1]-- 限流大小local limit = tonumber(ARGV[1])-- 獲取當前流量大小local curentLimit = tonumber(redis.call('get', key) or "0")if curentLimit + 1 > limit then -- 達到限流大小 返回 return 0;else -- 沒有達到閾值 value + 1 redis.call("INCRBY", key, 1) redis.call("EXPIRE", key, 2) return curentLimit + 1end

Java 中的調(diào)用邏輯:

  1. --lua 下標從 1 開始 
  2. -- 限流 key 
  3. local key = KEYS[1] 
  4. -- 限流大小 
  5. local limit = tonumber(ARGV[1]) 
  6. -- 獲取當前流量大小 
  7. local curentLimit = tonumber(redis.call('get', key) or "0") 
  8. if curentLimit + 1 > limit then 
  9.  -- 達到限流大小 返回 
  10.  return 0; 
  11. else 
  12.  -- 沒有達到閾值 value + 1 
  13.  redis.call("INCRBY", key, 1) 
  14.  redis.call("EXPIRE", key, 2) 
  15.  return curentLimit + 1 
  16. end 

所以只需要在需要限流的地方調(diào)用該方法對返回值進行判斷即可達到限流的目的。

當然這只是利用 Redis 做了一個粗暴的計數(shù)器,如果想實現(xiàn)類似于上文中的令牌桶算法可以基于 Lua 自行實現(xiàn)。

Builder 構(gòu)建器

在設(shè)計這個組件時想盡量的提供給使用者清晰、可讀性、不易出錯的 API。

比如第一步,如何構(gòu)建一個限流對象。

最常用的方式自然就是構(gòu)造函數(shù),如果有多個域則可以采用重疊構(gòu)造器的方式:

  1. public A(){} 
  2. public A(int a){} 
  3. public A(int a,int b){} 

缺點也是顯而易見的:如果參數(shù)過多會導(dǎo)致難以閱讀,甚至如果參數(shù)類型一致的情況下客戶端顛倒了順序,但不會引起警告從而出現(xiàn)難以預(yù)測的結(jié)果。

第二種方案可以采用 JavaBean 模式,利用 setter 方法進行構(gòu)建:

  1. A a = new A(); 
  2. a.setA(a); 
  3. a.setB(b); 

這種方式清晰易讀,但卻容易讓對象處于不一致的狀態(tài),使對象處于線程不安全的狀態(tài)。

所以這里采用了第三種創(chuàng)建對象的方式,構(gòu)建器:

  1. public class RedisLimit { 
  2.  private JedisCommands jedis; 
  3.  private int limit = 200; 
  4.  private static final int FAIL_CODE = 0; 
  5.  /** 
  6.  * lua script 
  7.  */ 
  8.  private String script; 
  9.  private RedisLimit(Builder builder) { 
  10.  this.limit = builder.limit ; 
  11.  this.jedis = builder.jedis ; 
  12.  buildScript(); 
  13.  } 
  14.  /** 
  15.  * limit traffic 
  16.  * @return if true 
  17.  */ 
  18.  public boolean limit() { 
  19.  String key = String.valueOf(System.currentTimeMillis() / 1000); 
  20.  Object result = null; 
  21.  if (jedis instanceof Jedis) { 
  22.  result = ((Jedis) this.jedis).eval(script, Collections.singletonList(key), Collections.singletonList(String.valueOf(limit))); 
  23.  } else if (jedis instanceof JedisCluster) { 
  24.  result = ((JedisCluster) this.jedis).eval(script, Collections.singletonList(key), Collections.singletonList(String.valueOf(limit))); 
  25.  } else { 
  26.  //throw new RuntimeException("instance is error") ; 
  27.  return false; 
  28.  } 
  29.  if (FAIL_CODE != (Long) result) { 
  30.  return true; 
  31.  } else { 
  32.  return false; 
  33.  } 
  34.  } 
  35.  /** 
  36.  * read lua script 
  37.  */ 
  38.  private void buildScript() { 
  39.  script = ScriptUtil.getScript("limit.lua"); 
  40.  } 
  41.  /** 
  42.  * the builder 
  43.  * @param  
  44.  */ 
  45.  public static class Builder
  46.  private T jedis = null ; 
  47.  private int limit = 200; 
  48.  public Builder(T jedis){ 
  49.  this.jedis = jedis ; 
  50.  } 
  51.  public Builder limit(int limit){ 
  52.  this.limit = limit ; 
  53.  return this; 
  54.  } 
  55. 本文名稱:分布式限流,你想知道的都在這里
    轉(zhuǎn)載源于:http://aaarwkj.com/news/101365.html

    成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供網(wǎng)頁設(shè)計公司、建站公司營銷型網(wǎng)站建設(shè)、品牌網(wǎng)站制作、網(wǎng)站內(nèi)鏈網(wǎng)站收錄

    廣告

    聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)

    h5響應(yīng)式網(wǎng)站建設(shè)
    在线观看视频免费午夜| 日本91大神在线观看| 最新国产激情福利网站| 人人妻人人澡人人妻| 日韩欧美一区二区三级| 久久热福利视频就在这里| 亚洲人成免费在线观看| 人妻丰满熟妇九九久久| 亚洲第一国产综合自拍| 精品视频中文字幕天码| 欧美成人免费做真爱高潮| 日韩在线一区二区视频观看| 中文字幕在线日韩av| 91伊人手机在线观看| 日本91一区二区不卡| 欧美成人高清在线播放| 婷婷国产综合一区二区三区| 国产三级系列在线观看| 日韩三级精品一区二区| 亚洲欧美一区二区色慰| 中国毛片一区二区三区| 日韩欧美亚洲国产另类| 久草视频在线免费资源站| 麻豆国产自拍在线视频| 在线不卡日本v二区| 色男人天堂亚洲男人天堂| 日韩精品一区二区国产| 国产一区国产二区中文字幕| 日本黄色录像在线观看| 亚洲国产日朝欧美综合久久| 91在线免费观看日本| 亚洲男人天堂中文字幕| 在线成人免费日韩视频| 亚洲日本韩国在线免费| 少妇被按摩高潮在线观看| 国产熟女肥臀精品国产馆乱| 国产91福利视频在线| 国产成人性生交大片免费| 免费看欧美粗又大爽老| 欧美一区二区三区午夜| 日韩免费av在线网站|