小編給大家分享一下pytorch方法測試之歸一化BatchNorm2d的示例分析,相信大部分人都還不怎么了解,因此分享這篇文章給大家參考一下,希望大家閱讀完這篇文章后大有收獲,下面讓我們一起去了解一下吧!
創(chuàng)新互聯(lián)專注于企業(yè)營銷型網(wǎng)站建設(shè)、網(wǎng)站重做改版、東坡網(wǎng)站定制設(shè)計、自適應(yīng)品牌網(wǎng)站建設(shè)、html5、商城系統(tǒng)網(wǎng)站開發(fā)、集團公司官網(wǎng)建設(shè)、外貿(mào)營銷網(wǎng)站建設(shè)、高端網(wǎng)站制作、響應(yīng)式網(wǎng)頁設(shè)計等建站業(yè)務(wù),價格優(yōu)惠性價比高,為東坡等各大城市提供網(wǎng)站開發(fā)制作服務(wù)。測試代碼:
import torch import torch.nn as nn m = nn.BatchNorm2d(2,affine=True) #權(quán)重w和偏重將被使用 input = torch.randn(1,2,3,4) output = m(input) print("輸入圖片:") print(input) print("歸一化權(quán)重:") print(m.weight) print("歸一化的偏重:") print(m.bias) print("歸一化的輸出:") print(output) print("輸出的尺度:") print(output.size()) # i = torch.randn(1,1,2) print("輸入的第一個維度:") print(input[0][0]) firstDimenMean = torch.Tensor.mean(input[0][0]) firstDimenVar= torch.Tensor.var(input[0][0],False) #Bessel's Correction貝塞爾校正不會被使用 print(m.eps) print("輸入的第一個維度平均值:") print(firstDimenMean) print("輸入的第一個維度方差:") print(firstDimenVar) bacthnormone = \ ((input[0][0][0][0] - firstDimenMean)/(torch.pow(firstDimenVar+m.eps,0.5) ))\ * m.weight[0] + m.bias[0] print(bacthnormone)
輸出為:
輸入圖片:
tensor([[[[-2.4308, -1.0281, -1.1322, 0.9819], [-0.4069, 0.7973, 1.6296, 1.6797], [ 0.2802, -0.8285, 2.0101, 0.1286]], [[-0.5740, 0.1970, -0.7209, -0.7231], [-0.1489, 0.4993, 0.4159, 1.4238], [ 0.0334, -0.6333, 0.1308, -0.2180]]]])
歸一化權(quán)重:
Parameter containing: tensor([ 0.5653, 0.0322])
歸一化的偏重:
Parameter containing: tensor([ 0., 0.])
歸一化的輸出:
tensor([[[[-1.1237, -0.5106, -0.5561, 0.3679], [-0.2391, 0.2873, 0.6510, 0.6729], [ 0.0612, -0.4233, 0.8173, -0.0050]], [[-0.0293, 0.0120, -0.0372, -0.0373], [-0.0066, 0.0282, 0.0237, 0.0777], [ 0.0032, -0.0325, 0.0084, -0.0103]]]])
輸出的尺度:
torch.Size([1, 2, 3, 4])
輸入的第一個維度:
tensor([[-2.4308, -1.0281, -1.1322, 0.9819], [-0.4069, 0.7973, 1.6296, 1.6797], [ 0.2802, -0.8285, 2.0101, 0.1286]]) 1e-05
輸入的第一個維度平均值:
tensor(0.1401)
輸入的第一個維度方差:
tensor(1.6730) tensor(-1.1237)
結(jié)論:
輸出的計算公式如下
注意torch中方差實現(xiàn)的方法是沒有使用Bessel's correction 貝塞爾校正的方差,所以在自己寫的方差中不要用錯了。
以上是“pytorch方法測試之歸一化BatchNorm2d的示例分析”這篇文章的所有內(nèi)容,感謝各位的閱讀!相信大家都有了一定的了解,希望分享的內(nèi)容對大家有所幫助,如果還想學習更多知識,歡迎關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道!
本文題目:pytorch方法測試之歸一化BatchNorm2d的示例分析-創(chuàng)新互聯(lián)
網(wǎng)站URL:http://aaarwkj.com/article18/ccdjdp.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供品牌網(wǎng)站制作、定制開發(fā)、Google、網(wǎng)站設(shè)計、搜索引擎優(yōu)化、域名注冊
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)
猜你還喜歡下面的內(nèi)容