欧美一级特黄大片做受成人-亚洲成人一区二区电影-激情熟女一区二区三区-日韩专区欧美专区国产专区

Python中怎么理解yieldfrom語法-創(chuàng)新互聯(lián)

本篇內(nèi)容介紹了“Python中怎么理解yield from語法”的有關(guān)知識,在實際案例的操作過程中,不少人都會遇到這樣的困境,接下來就讓小編帶領(lǐng)大家學(xué)習(xí)一下如何處理這些情況吧!希望大家仔細閱讀,能夠?qū)W有所成!

為長泰等地區(qū)用戶提供了全套網(wǎng)頁設(shè)計制作服務(wù),及長泰網(wǎng)站建設(shè)行業(yè)解決方案。主營業(yè)務(wù)為網(wǎng)站設(shè)計制作、成都網(wǎng)站制作、長泰網(wǎng)站設(shè)計,以傳統(tǒng)方式定制建設(shè)網(wǎng)站,并提供域名空間備案等一條龍服務(wù),秉承以專業(yè)、用心的態(tài)度為用戶提供真誠的服務(wù)。我們深信只要達到每一位用戶的要求,就會得到認可,從而選擇與我們長期合作。這樣,我們也可以走得更遠!

. 為什么要使用協(xié)程

在上一篇中,我們從生成器的基本認識與使用,成功過渡到了協(xié)程。

但一定有許多人,只知道協(xié)程是個什么東西,但并不知道為什么要用協(xié)程?換句話來說,并不知道在什么情況下用協(xié)程?它相比多線程來說,有哪些過人之處呢?

在開始講yield from 之前,我想先解決一下這個給很多人帶來困惑的問題。

舉個例子。假如我們做一個爬蟲。我們要爬取多個網(wǎng)頁,這里簡單舉例兩個網(wǎng)頁(兩個spider函數(shù)),獲取HTML(耗IO耗時),然后再對HTML對行解析取得我們感興趣的數(shù)據(jù)。

我們的代碼結(jié)構(gòu)精簡如下:

def spider_01(url):

    html = get_html(url)

    ...

    data = parse_html(html)

def spider_02(url):

    html = get_html(url)

    ...

    data = parse_html(html)

我們都知道,get_html()等待返回網(wǎng)頁是非常耗IO的,一個網(wǎng)頁還好,如果我們爬取的網(wǎng)頁數(shù)據(jù)極其龐大,這個等待時間就非常驚人,是極大的浪費。

聰明的程序員,當(dāng)然會想如果能在get_html()這里暫停一下,不用傻乎乎地去等待網(wǎng)頁返回,而是去做別的事。等過段時間再回過頭來到剛剛暫停的地方,接收返回的html內(nèi)容,然后還可以接下去解析parse_html(html)。

利用常規(guī)的方法,幾乎是沒辦法實現(xiàn)如上我們想要的效果的。所以Python想得很周到,從語言本身給我們實現(xiàn)了這樣的功能,這就是yield語法??梢詫崿F(xiàn)在某一函數(shù)中暫停的效果。

試著思考一下,假如沒有協(xié)程,我們要寫一個并發(fā)程序??赡苡幸韵聠栴}

1)使用最常規(guī)的同步編程要實現(xiàn)異步并發(fā)效果并不理想,或者難度極高。2)由于GIL鎖的存在,多線程的運行需要頻繁的加鎖解鎖,切換線程,這極大地降低了并發(fā)性能;

而協(xié)程的出現(xiàn),剛好可以解決以上的問題。它的特點有

00001. 協(xié)程是在單線程里實現(xiàn)任務(wù)的切換的

00002. 利用同步的方式去實現(xiàn)異步

00003. 不再需要鎖,提高了并發(fā)性能

. yield from的用法詳解

yield from 是在Python3.3才出現(xiàn)的語法。所以這個特性在Python2中是沒有的。

yield from 后面需要加的是可迭代對象,它可以是普通的可迭代對象,也可以是迭代器,甚至是生成器。

簡單應(yīng)用:拼接可迭代對象

我們可以用一個使用yield和一個使用yield from的例子來對比看下。

使用yield

# 字符串astr='ABC'# 列表alist=[1,2,3]# 字典adict={"name":"wangbm","age":18}# 生成器agen=(i for i in range(4,8))

def gen(*args, **kw):

    for item in args:

        for i in item:

            yield i

new_list=gen(astr, alist, adict, agen)print(list(new_list))# ['A', 'B', 'C', 1, 2, 3, 'name', 'age', 4, 5, 6, 7]

使用yield from

# 字符串astr='ABC'# 列表alist=[1,2,3]# 字典adict={"name":"wangbm","age":18}# 生成器agen=(i for i in range(4,8))

def gen(*args, **kw):

    for item in args:

        yield from item

new_list=gen(astr, alist, adict, agen)print(list(new_list))# ['A', 'B', 'C', 1, 2, 3, 'name', 'age', 4, 5, 6, 7]

由上面兩種方式對比,可以看出,yield from后面加上可迭代對象,他可以把可迭代對象里的每個元素一個一個的yield出來,對比yield來說代碼更加簡潔,結(jié)構(gòu)更加清晰。

復(fù)雜應(yīng)用:生成器的嵌套

如果你認為只是 yield from 僅僅只有上述的功能的話,那你就太小瞧了它,它的更強大的功能還在后面。

當(dāng) yield from 后面加上一個生成器后,就實現(xiàn)了生成的嵌套。

當(dāng)然實現(xiàn)生成器的嵌套,并不是一定必須要使用yield from,而是使用yield from可以讓我們避免讓我們自己處理各種料想不到的異常,而讓我們專注于業(yè)務(wù)代碼的實現(xiàn)。如果自己用yield去實現(xiàn),那只會加大代碼的編寫難度,降低開發(fā)效率,降低代碼的可讀性。既然Python已經(jīng)想得這么周到,我們當(dāng)然要好好利用起來。

講解它之前,首先要知道這個幾個概念

1、調(diào)用方:調(diào)用委派生成器的客戶端(調(diào)用方)代碼2、委托生成器:包含yield from表達式的生成器函數(shù)3、子生成器:yield from后面加的生成器函數(shù)

你可能不知道他們都是什么意思,沒關(guān)系,來看下這個例子。

這個例子,是實現(xiàn)實時計算平均值的。比如,第一次傳入10,那返回平均數(shù)自然是10.第二次傳入20,那返回平均數(shù)是(10+20)/2=15第三次傳入30,那返回平均數(shù)(10+20+30)/3=20

# 子生成器def average_gen():

    total = 0

    count = 0

    average = 0

    while True:

        new_num = yield average

        count += 1

        total += new_num

        average = total/count

# 委托生成器def proxy_gen():

    while True:

        yield from average_gen()

# 調(diào)用方def main():

    calc_average = proxy_gen()

    next(calc_average)            # 預(yù)激下生成器

    print(calc_average.send(10))  # 打?。?0.0

    print(calc_average.send(20))  # 打?。?5.0

    print(calc_average.send(30))  # 打?。?0.0

if __name__ == '__main__':

    main()

認真閱讀以上代碼,你應(yīng)該很容易能理解,調(diào)用方、委托生成器、子生成器之間的關(guān)系。我就不多說了

委托生成器的作用是:在調(diào)用方與子生成器之間建立一個雙向通道。

所謂的雙向通道是什么意思呢?調(diào)用方可以通過send()直接發(fā)送消息給子生成器,而子生成器yield的值,也是直接返回給調(diào)用方。

你可能會經(jīng)??吹接行┐a,可以在yield from前面看到可以賦值。這是什么用法?

你可能會以為,子生成器yield回來的值,被委托生成器給攔截了。你可以親自寫個demo運行試驗一下,并不是你想的那樣。因為我們之前說了,委托生成器,只起一個橋梁作用,它建立的是一個雙向通道,它并沒有權(quán)利也沒有辦法,對子生成器yield回來的內(nèi)容做攔截。

為了解釋這個用法,我還是用上述的例子,并對其進行了一些改造。添加了一些注釋,希望你能看得明白。

按照慣例,我們還是舉個例子。

# 子生成器def average_gen():

    total = 0

    count = 0

    average = 0

    while True:

        new_num = yield average

        if new_num is None:

            break

        count += 1

        total += new_num

        average = total/count

    # 每一次return,都意味著當(dāng)前協(xié)程結(jié)束。

    return total,count,average

# 委托生成器def proxy_gen():

    while True:

        # 只有子生成器要結(jié)束(return)了,yield from左邊的變量才會被賦值,后面的代碼才會執(zhí)行。

        total, count, average = yield from average_gen()

        print("計算完畢??!\n總共傳入 {} 個數(shù)值, 總和:{},平均數(shù):{}".format(count, total, average))

# 調(diào)用方def main():

    calc_average = proxy_gen()

    next(calc_average)            # 預(yù)激協(xié)程

    print(calc_average.send(10))  # 打印:10.0

    print(calc_average.send(20))  # 打?。?5.0

    print(calc_average.send(30))  # 打印:20.0

    calc_average.send(None)      # 結(jié)束協(xié)程

    # 如果此處再調(diào)用calc_average.send(10),由于上一協(xié)程已經(jīng)結(jié)束,將重開一協(xié)程

if __name__ == '__main__':

    main()

運行后,輸出

10.015.020.0計算完畢!!總共傳入 3 個數(shù)值, 總和:60,平均數(shù):20.0

. 為什么要使用yield from

學(xué)到這里,我相信你肯定要問,既然委托生成器,起到的只是一個雙向通道的作用,我還需要委托生成器做什么?我調(diào)用方直接調(diào)用子生成器不就好啦?

高能預(yù)警~~~

下面我們來一起探討一下,到底yield from 有什么過人之處,讓我們非要用它不可。

因為它可以幫我們處理異常

如果我們?nèi)サ粑猩善?,而直接調(diào)用子生成器。那我們就需要把代碼改成像下面這樣,我們需要自己捕獲異常并處理。而不像使yield from那樣省心。

# 子生成器# 子生成器def average_gen():

    total = 0

    count = 0

    average = 0

    while True:

        new_num = yield average

        if new_num is None:

            break

        count += 1

        total += new_num

        average = total/count

    return total,count,average

# 調(diào)用方def main():

    calc_average = average_gen()

    next(calc_average)            # 預(yù)激協(xié)程

    print(calc_average.send(10))  # 打印:10.0

    print(calc_average.send(20))  # 打?。?5.0

    print(calc_average.send(30))  # 打印:20.0

    # ----------------注意-----------------

    try:

        calc_average.send(None)

    except StopIteration as e:

        total, count, average = e.value

        print("計算完畢?。n總共傳入 {} 個數(shù)值, 總和:{},平均數(shù):{}".format(count, total, average))

    # ----------------注意-----------------

if __name__ == '__main__':

    main()

此時的你,可能會說,不就一個StopIteration的異常嗎?自己捕獲也沒什么大不了的。

你要是知道yield from在背后為我們默默無聞地做了哪些事,你就不會這樣說了。

具體yield from為我們做了哪些事,可以參考如下這段代碼。

#一些說明"""_i:子生成器,同時也是一個迭代器_y:子生成器生產(chǎn)的值_r:yield from 表達式最終的值_s:調(diào)用方通過send()發(fā)送的值_e:異常對象"""

_i = iter(EXPR)

try:

    _y = next(_i)except StopIteration as _e:

    _r = _e.value

else:

    while 1:

        try:

            _s = yield _y

        except GeneratorExit as _e:

            try:

                _m = _i.close

            except AttributeError:

                pass

            else:

                _m()

            raise _e

        except BaseException as _e:

            _x = sys.exc_info()

            try:

                _m = _i.throw

            except AttributeError:

                raise _e

            else:

                try:

                    _y = _m(*_x)

                except StopIteration as _e:

                    _r = _e.value

                    break

        else:

            try:

                if _s is None:

                    _y = next(_i)

                else:

                    _y = _i.send(_s)

            except StopIteration as _e:

                _r = _e.value

                breakRESULT = _r

以上的代碼,稍微有點復(fù)雜,有興趣的同學(xué)可以結(jié)合以下說明去研究看看。

00001. 迭代器(即可指子生成器)產(chǎn)生的值直接返還給調(diào)用者

00002. 任何使用send()方法發(fā)給委派生產(chǎn)器(即外部生產(chǎn)器)的值被直接傳遞給迭代器。如果send值是None,則調(diào)用迭代器next()方法;如果不為None,則調(diào)用迭代器的send()方法。如果對迭代器的調(diào)用產(chǎn)生StopIteration異常,委派生產(chǎn)器恢復(fù)繼續(xù)執(zhí)行yield from后面的語句;若迭代器產(chǎn)生其他任何異常,則都傳遞給委派生產(chǎn)器。

00003. 子生成器可能只是一個迭代器,并不是一個作為協(xié)程的生成器,所以它不支持.throw()和.close()方法,即可能會產(chǎn)生AttributeError 異常。

00004. 除了GeneratorExit 異常外的其他拋給委派生產(chǎn)器的異常,將會被傳遞到迭代器的throw()方法。如果迭代器throw()調(diào)用產(chǎn)生了StopIteration異常,委派生產(chǎn)器恢復(fù)并繼續(xù)執(zhí)行,其他異常則傳遞給委派生產(chǎn)器。

00005. 如果GeneratorExit異常被拋給委派生產(chǎn)器,或者委派生產(chǎn)器的close()方法被調(diào)用,如果迭代器有close()的話也將被調(diào)用。如果close()調(diào)用產(chǎn)生異常,異常將傳遞給委派生產(chǎn)器。否則,委派生產(chǎn)器將拋出GeneratorExit 異常。

00006. 當(dāng)?shù)鹘Y(jié)束并拋出異常時,yield from表達式的值是其StopIteration 異常中的第一個參數(shù)。

00007. 一個生成器中的return expr語句將會從生成器退出并拋出 StopIteration(expr)異常。

“Python中怎么理解yield from語法”的內(nèi)容就介紹到這里了,感謝大家的閱讀。如果想了解更多行業(yè)相關(guān)的知識可以關(guān)注創(chuàng)新互聯(lián)-成都網(wǎng)站建設(shè)公司網(wǎng)站,小編將為大家輸出更多高質(zhì)量的實用文章!

新聞名稱:Python中怎么理解yieldfrom語法-創(chuàng)新互聯(lián)
當(dāng)前地址:http://aaarwkj.com/article24/pgpje.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供品牌網(wǎng)站制作企業(yè)網(wǎng)站制作、ChatGPT、自適應(yīng)網(wǎng)站、服務(wù)器托管品牌網(wǎng)站建設(shè)

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)

外貿(mào)網(wǎng)站建設(shè)
色哟国产传媒视频在线观看| 91九色国产老熟女乱子| av 一区二区三区av| 亚洲欧美日韩在线第三页| 热久久视频这里只有精品| 亚洲国产成人精品久久精品| 亚洲中文字幕在线乱码| 亚洲狠狠爱一区二区三区| 成人三级中文字幕电影| 一区二区三区乱码av| 高清欧美精品一区二区三区 | 国产粉嫩美女一区二区三| 久久精品一区二区熟女| 色婷婷亚洲一区二区三区| 婷婷久久香蕉五综合加勒比| 欧美日韩国产一区在线| 18禁在线免费观看网站| av中文在线免费观看| 国产欧美成人综合色就色| 亚洲精品国产熟女av| 日本h电影一区二区三区| 亚洲欧美午夜激情啪啪视频| 九九热最新视频免费看| 国产精品视频在线播放| 精品一区二区日韩在线| 亚洲av毛片一区二区三区网 | 亚洲ve中文字幕久久一区二区 | 亚洲永久免费黄色av| 极品女神福利视频久久| 天天操夜夜操白天操晚上操| 宅男午夜一区二区三区| 蜜桃av网站免费观看| 国产成人午夜视频免费一区| 九九久久精品久久久精品| 丝袜美腿一区二区三区| 男女午夜激情四射视频| 亚洲激情午夜福利视频| 亚洲欧美一区二区国产| 99久久久国产精品蜜臀| 91精品中综合久久久久| 国产在线乱码一区二区|