Membase
十載的西固網(wǎng)站建設(shè)經(jīng)驗,針對設(shè)計、前端、開發(fā)、售后、文案、推廣等六對一服務(wù),響應(yīng)快,48小時及時工作處理。網(wǎng)絡(luò)營銷推廣的優(yōu)勢是能夠根據(jù)用戶設(shè)備顯示端的尺寸不同,自動調(diào)整西固建站的顯示方式,使網(wǎng)站能夠適用不同顯示終端,在瀏覽器中調(diào)整網(wǎng)站的寬度,無論在任何一種瀏覽器上瀏覽網(wǎng)站,都能展現(xiàn)優(yōu)雅布局與設(shè)計,從而大程度地提升瀏覽體驗。成都創(chuàng)新互聯(lián)從事“西固網(wǎng)站設(shè)計”,“西固網(wǎng)站推廣”以來,每個客戶項目都認真落實執(zhí)行。
Membase 是 NoSQL 家族的一個新的重量級的成員。Membase是開源項目,源代碼采用了Apache2.0的使用許可。該項目托管在GitHub.Source tarballs上,可以下載beta版本的Linux二進制包。該產(chǎn)品主要是由North Scale的memcached核心團隊成員開發(fā)完成,其中還包括Zynga和NHN這兩個主要貢獻者的工程師,這兩個組織都是很大的在線游戲和社區(qū)網(wǎng)絡(luò)空間的供應(yīng)商。
Membase容易安裝、操作,可以從單節(jié)點方便的擴展到集群,而且為memcached(有線協(xié)議的兼容性)實現(xiàn)了即插即用功能,在應(yīng)用方面為開發(fā)者和經(jīng)營者提供了一個比較低的門檻。做為緩存解決方案,Memcached已經(jīng)在不同類型的領(lǐng)域(特別是大容量的Web應(yīng)用)有了廣泛的使用,其中 Memcached的部分基礎(chǔ)代碼被直接應(yīng)用到了Membase服務(wù)器的前端。
通過兼容多種編程語言和框架,Membase具備了很好的復用性。在安裝和配置方面,Membase提供了有效的圖形化界面和編程接口,包括可配置 的告警信息。
Membase的目標是提供對外的線性擴展能力,包括為了增加集群容量,可以針對統(tǒng)一的節(jié)點進行復制。 另外,對存儲的數(shù)據(jù)進行再分配仍然是必要的。
這方面的一個有趣的特性是NoSQL解決方案所承諾的可預(yù)測的性能,類準確性的延遲和吞吐量。通過如下方式可以獲得上面提到的特性:
◆ 自動將在線數(shù)據(jù)遷移到低延遲的存儲介質(zhì)的技術(shù)(內(nèi)存,固態(tài)硬盤,磁盤)
◆ 可選的寫操作一一異步,同步(基于復制,持久化)
◆ 反向通道再平衡[未來考慮支持]
◆ 多線程低鎖爭用
◆ 盡可能使用異步處理
◆ 自動實現(xiàn)重復數(shù)據(jù)刪除
◆ 動態(tài)再平衡現(xiàn)有集群
◆ 通過把數(shù)據(jù)復制到多個集群單元和支持快速失敗轉(zhuǎn)移來提供系統(tǒng)的高可用性。
MongoDB
MongoDB是一個介于關(guān)系數(shù)據(jù)庫和非關(guān)系數(shù)據(jù)庫之間的產(chǎn)品,是非關(guān)系數(shù)據(jù)庫當中功能最豐富,最像關(guān)系數(shù)據(jù)庫的。他支持的數(shù)據(jù)結(jié)構(gòu)非常松散,是類似json的bjson格式,因此可以存儲比較復雜的數(shù)據(jù)類型。Mongo最大的特點是他支持的查詢語言非常強大,其語法有點類似于面向?qū)ο蟮牟樵冋Z言,幾乎可以實現(xiàn)類似關(guān)系數(shù)據(jù)庫單表查詢的絕大部分功能,而且還支持對數(shù)據(jù)建立索引。它的特點是高性能、易部署、易使用,存儲數(shù)據(jù)非常方便。
主要功能特性:
◆ 面向集合存儲,易存儲對象類型的數(shù)據(jù)
“面向集合”(Collenction-Oriented),意思是數(shù)據(jù)被分組存儲在數(shù)據(jù)集中,被稱為一個集合(Collenction)。每個 集合在數(shù)據(jù)庫中都有一個唯一的標識名,并且可以包含無限數(shù)目的文檔。集合的概念類似關(guān)系型數(shù)據(jù)庫(RDBMS)里的表(table),不同的是它不需要定 義任何模式(schema)。
◆ 模式自由
模式自由(schema-free),意味著對于存儲在mongodb數(shù)據(jù)庫中的文件,我們不需要知道它的任何結(jié)構(gòu)定義。如果需要的話,你完全可以把不同結(jié)構(gòu)的文件存儲在同一個數(shù)據(jù)庫里。
◆支持動態(tài)查詢
◆支持完全索引,包含內(nèi)部對象
◆支持查詢
◆支持復制和故障恢復
◆使用高效的二進制數(shù)據(jù)存儲,包括大型對象(如視頻等)
◆自動處理碎片,以支持云計算層次的擴展性
◆支持RUBY,PYTHON,JAVA,C++,PHP等多種語言
◆文件存儲格式為BSON(一種JSON的擴展)
BSON(Binary Serialized document Format)存儲形式是指:存儲在集合中的文檔,被存儲為鍵-值對的形式。鍵用于唯一標識一個文檔,為字符串類型,而值則可以是各種復雜的文件類型。
◆可通過網(wǎng)絡(luò)訪問
MongoDB服務(wù)端可運行在Linux、Windows或OS X平臺,支持32位和64位應(yīng)用,默認端口為27017。推薦運行在64位平臺,因為MongoDB在32位模式運行時支持的最大文件尺寸為2GB。
MongoDB把數(shù)據(jù)存儲在文件中(默認路徑為:/data/db),為提高效率使用內(nèi)存映射文件進行管理。
Hypertable
Hypertable是一個開源、高性能、可伸縮的數(shù)據(jù)庫,它采用與Google的Bigtable相似的模型。在過去數(shù)年中,Google為在PC集群 上運行的可伸縮計算基礎(chǔ)設(shè)施設(shè)計建造了三個關(guān)鍵部分。第一個關(guān)鍵的基礎(chǔ)設(shè)施是Google File System(GFS),這是一個高可用的文件系統(tǒng),提供了一個全局的命名空間。它通過跨機器(和跨機架)的文件數(shù)據(jù)復制來達到高可用性,并因此免受傳統(tǒng) 文件存儲系統(tǒng)無法避免的許多失敗的影響,比如電源、內(nèi)存和網(wǎng)絡(luò)端口等失敗。第二個基礎(chǔ)設(shè)施是名為Map-Reduce的計算框架,它與GFS緊密協(xié)作,幫 助處理收集到的海量數(shù)據(jù)。第三個基礎(chǔ)設(shè)施是Bigtable,它是傳統(tǒng)數(shù)據(jù)庫的替代。Bigtable讓你可以通過一些主鍵來組織海量數(shù)據(jù),并實現(xiàn)高效的 查詢。Hypertable是Bigtable的一個開源實現(xiàn),并且根據(jù)我們的想法進行了一些改進。
Apache Cassandra
Apache Cassandra是一套開源分布式Key-Value存儲系統(tǒng)。它最初由Facebook開發(fā),用于儲存特別大的數(shù)據(jù)。Facebook在使用此系統(tǒng)。
主要特性:
◆ 分布式
◆ 基于column的結(jié)構(gòu)化
◆ 高伸展性
Cassandra的主要特點就是它不是一個數(shù)據(jù)庫,而是由一堆數(shù)據(jù)庫節(jié)點共同構(gòu)成的一個分布式網(wǎng)絡(luò)服務(wù),對Cassandra 的一個寫操作,會被復制到其他節(jié)點上去,對Cassandra的讀操作,也會被路由到某個節(jié)點上面去讀取。對于一個Cassandra群集來說,擴展性能 是比較簡單的事情,只管在群集里面添加節(jié)點就可以了。
Cassandra是一個混合型的非關(guān)系的數(shù)據(jù)庫,類似于Google的BigTable。其主要功能比 Dynomite(分布式的Key-Value存 儲系統(tǒng))更豐富,但支持度卻不如文檔存儲MongoDB(介于關(guān)系數(shù)據(jù)庫和非關(guān)系數(shù)據(jù)庫之間的開源產(chǎn)品,是非關(guān)系數(shù)據(jù)庫當中功能最豐富,最像關(guān)系數(shù)據(jù)庫 的。Cassandra最初由Facebook開發(fā),后轉(zhuǎn)變成了開源項目。它是一個網(wǎng)絡(luò)社交云計算方面理想的數(shù)據(jù)庫。以Amazon專有的完全分布式的Dynamo為基礎(chǔ),結(jié)合了Google BigTable基于列族(Column Family)的數(shù)據(jù)模型。P2P去中心化的存儲。很多方面都可以稱之為Dynamo 2.0。
CouchDB
所用語言: Erlang
特點:DB一致性,易于使用
使用許可: Apache
協(xié)議: HTTP/REST
雙向數(shù)據(jù)復制,持續(xù)進行或臨時處理,處理時帶沖突檢查,因此,采用的是master-master復制
MVCC – 寫操作不阻塞讀操作
可保存文件之前的版本
Crash-only(可靠的)設(shè)計
需要不時地進行數(shù)據(jù)壓縮
視圖:嵌入式 映射/減少
格式化視圖:列表顯示
支持進行服務(wù)器端文檔驗證
支持認證
根據(jù)變化實時更新
支持附件處理
因此, CouchApps(獨立的 js應(yīng)用程序)
需要 jQuery程序庫
最佳應(yīng)用場景:適用于數(shù)據(jù)變化較少,執(zhí)行預(yù)定義查詢,進行數(shù)據(jù)統(tǒng)計的應(yīng)用程序。適用于需要提供數(shù)據(jù)版本支持的應(yīng)用程序。
例如:CRM、CMS系統(tǒng)。 master-master復制對于多站點部署是非常有用的。
和其他數(shù)據(jù)庫比較,其突出特點是:
◆ 模式靈活 :使用Cassandra,像文檔存儲,你不必提前解決記錄中的字段。你可以在系統(tǒng)運行時隨意的添加或移除字段。這是一個驚人的效率提升,特別是在大型部 署上。
◆ 真正的可擴展性 :Cassandra是純粹意義上的水平擴展。為給集群添加更多容量,可以指向另一臺電腦。你不必重啟任何進程,改變應(yīng)用查詢,或手動遷移任何數(shù)據(jù)。
◆ 多數(shù)據(jù)中心識別 :你可以調(diào)整你的節(jié)點布局來避免某一個數(shù)據(jù)中心起火,一個備用的數(shù)據(jù)中心將至少有每條記錄的完全復制。
◆ 范圍查詢 :如果你不喜歡全部的鍵值查詢,則可以設(shè)置鍵的范圍來查詢。
◆ 列表數(shù)據(jù)結(jié)構(gòu) :在混合模式可以將超級列添加到5維。對于每個用戶的索引,這是非常方便的。
◆ 分布式寫操作 :有可以在任何地方任何時間集中讀或?qū)懭魏螖?shù)據(jù)。并且不會有任何單點失敗。
問度娘,啥都有。
[python視頻教程] lets python視頻教程免費下載
鏈接:
提取碼:dxpn
[python視頻教程] lets python 視頻教程|Lets-python-017-文件和輸入輸出01.avi|Lets-python-016-條件和循環(huán)02-練習題和生成器.avi|Lets-python-015-條件和循環(huán)01.avi|Lets-python-014-映射和集合02.avi|Lets-python-013-映射和集合01.avi|Lets-python-012-序列04-02.
簡單來說,從大數(shù)據(jù)的生命周期來看,無外乎四個方面:大數(shù)據(jù)采集、大數(shù)據(jù)預(yù)處理、大數(shù)據(jù)存儲、大數(shù)據(jù)分析,共同組成了大數(shù)據(jù)生命周期里最核心的技術(shù),下面分開來說:
一、大數(shù)據(jù)采集
大數(shù)據(jù)采集,即對各種來源的結(jié)構(gòu)化和非結(jié)構(gòu)化海量數(shù)據(jù),所進行的采集。
數(shù)據(jù)庫采集:流行的有Sqoop和ETL,傳統(tǒng)的關(guān)系型數(shù)據(jù)庫MySQL和Oracle 也依然充當著許多企業(yè)的數(shù)據(jù)存儲方式。當然了,目前對于開源的Kettle和Talend本身,也集成了大數(shù)據(jù)集成內(nèi)容,可實現(xiàn)hdfs,hbase和主流Nosq數(shù)據(jù)庫之間的數(shù)據(jù)同步和集成。
網(wǎng)絡(luò)數(shù)據(jù)采集:一種借助網(wǎng)絡(luò)爬蟲或網(wǎng)站公開API,從網(wǎng)頁獲取非結(jié)構(gòu)化或半結(jié)構(gòu)化數(shù)據(jù),并將其統(tǒng)一結(jié)構(gòu)化為本地數(shù)據(jù)的數(shù)據(jù)采集方式。
文件采集:包括實時文件采集和處理技術(shù)flume、基于ELK的日志采集和增量采集等等。
二、大數(shù)據(jù)預(yù)處理
大數(shù)據(jù)預(yù)處理,指的是在進行數(shù)據(jù)分析之前,先對采集到的原始數(shù)據(jù)所進行的諸如“清洗、填補、平滑、合并、規(guī)格化、一致性檢驗”等一系列操作,旨在提高數(shù)據(jù)質(zhì)量,為后期分析工作奠定基礎(chǔ)。數(shù)據(jù)預(yù)處理主要包括四個部分:數(shù)據(jù)清理、數(shù)據(jù)集成、數(shù)據(jù)轉(zhuǎn)換、數(shù)據(jù)規(guī)約。
數(shù)據(jù)清理:指利用ETL等清洗工具,對有遺漏數(shù)據(jù)(缺少感興趣的屬性)、噪音數(shù)據(jù)(數(shù)據(jù)中存在著錯誤、或偏離期望值的數(shù)據(jù))、不一致數(shù)據(jù)進行處理。
數(shù)據(jù)集成:是指將不同數(shù)據(jù)源中的數(shù)據(jù),合并存放到統(tǒng)一數(shù)據(jù)庫的,存儲方法,著重解決三個問題:模式匹配、數(shù)據(jù)冗余、數(shù)據(jù)值沖突檢測與處理。
數(shù)據(jù)轉(zhuǎn)換:是指對所抽取出來的數(shù)據(jù)中存在的不一致,進行處理的過程。它同時包含了數(shù)據(jù)清洗的工作,即根據(jù)業(yè)務(wù)規(guī)則對異常數(shù)據(jù)進行清洗,以保證后續(xù)分析結(jié)果準確性。
數(shù)據(jù)規(guī)約:是指在最大限度保持數(shù)據(jù)原貌的基礎(chǔ)上,最大限度精簡數(shù)據(jù)量,以得到較小數(shù)據(jù)集的操作,包括:數(shù)據(jù)方聚集、維規(guī)約、數(shù)據(jù)壓縮、數(shù)值規(guī)約、概念分層等。
三、大數(shù)據(jù)存儲
大數(shù)據(jù)存儲,指用存儲器,以數(shù)據(jù)庫的形式,存儲采集到的數(shù)據(jù)的過程,包含三種典型路線:
1、基于MPP架構(gòu)的新型數(shù)據(jù)庫集群
采用Shared Nothing架構(gòu),結(jié)合MPP架構(gòu)的高效分布式計算模式,通過列存儲、粗粒度索引等多項大數(shù)據(jù)處理技術(shù),重點面向行業(yè)大數(shù)據(jù)所展開的數(shù)據(jù)存儲方式。具有低成本、高性能、高擴展性等特點,在企業(yè)分析類應(yīng)用領(lǐng)域有著廣泛的應(yīng)用。
較之傳統(tǒng)數(shù)據(jù)庫,其基于MPP產(chǎn)品的PB級數(shù)據(jù)分析能力,有著顯著的優(yōu)越性。自然,MPP數(shù)據(jù)庫,也成為了企業(yè)新一代數(shù)據(jù)倉庫的最佳選擇。
2、基于Hadoop的技術(shù)擴展和封裝
基于Hadoop的技術(shù)擴展和封裝,是針對傳統(tǒng)關(guān)系型數(shù)據(jù)庫難以處理的數(shù)據(jù)和場景(針對非結(jié)構(gòu)化數(shù)據(jù)的存儲和計算等),利用Hadoop開源優(yōu)勢及相關(guān)特性(善于處理非結(jié)構(gòu)、半結(jié)構(gòu)化數(shù)據(jù)、復雜的ETL流程、復雜的數(shù)據(jù)挖掘和計算模型等),衍生出相關(guān)大數(shù)據(jù)技術(shù)的過程。
伴隨著技術(shù)進步,其應(yīng)用場景也將逐步擴大,目前最為典型的應(yīng)用場景:通過擴展和封裝 Hadoop來實現(xiàn)對互聯(lián)網(wǎng)大數(shù)據(jù)存儲、分析的支撐,其中涉及了幾十種NoSQL技術(shù)。
3、大數(shù)據(jù)一體機
這是一種專為大數(shù)據(jù)的分析處理而設(shè)計的軟、硬件結(jié)合的產(chǎn)品。它由一組集成的服務(wù)器、存儲設(shè)備、操作系統(tǒng)、數(shù)據(jù)庫管理系統(tǒng),以及為數(shù)據(jù)查詢、處理、分析而預(yù)安裝和優(yōu)化的軟件組成,具有良好的穩(wěn)定性和縱向擴展性。
四、大數(shù)據(jù)分析挖掘
從可視化分析、數(shù)據(jù)挖掘算法、預(yù)測性分析、語義引擎、數(shù)據(jù)質(zhì)量管理等方面,對雜亂無章的數(shù)據(jù),進行萃取、提煉和分析的過程。
1、可視化分析
可視化分析,指借助圖形化手段,清晰并有效傳達與溝通信息的分析手段。主要應(yīng)用于海量數(shù)據(jù)關(guān)聯(lián)分析,即借助可視化數(shù)據(jù)分析平臺,對分散異構(gòu)數(shù)據(jù)進行關(guān)聯(lián)分析,并做出完整分析圖表的過程。
具有簡單明了、清晰直觀、易于接受的特點。
2、數(shù)據(jù)挖掘算法
數(shù)據(jù)挖掘算法,即通過創(chuàng)建數(shù)據(jù)挖掘模型,而對數(shù)據(jù)進行試探和計算的,數(shù)據(jù)分析手段。它是大數(shù)據(jù)分析的理論核心。
數(shù)據(jù)挖掘算法多種多樣,且不同算法因基于不同的數(shù)據(jù)類型和格式,會呈現(xiàn)出不同的數(shù)據(jù)特點。但一般來講,創(chuàng)建模型的過程卻是相似的,即首先分析用戶提供的數(shù)據(jù),然后針對特定類型的模式和趨勢進行查找,并用分析結(jié)果定義創(chuàng)建挖掘模型的最佳參數(shù),并將這些參數(shù)應(yīng)用于整個數(shù)據(jù)集,以提取可行模式和詳細統(tǒng)計信息。
3、預(yù)測性分析
預(yù)測性分析,是大數(shù)據(jù)分析最重要的應(yīng)用領(lǐng)域之一,通過結(jié)合多種高級分析功能(特別統(tǒng)計分析、預(yù)測建模、數(shù)據(jù)挖掘、文本分析、實體分析、優(yōu)化、實時評分、機器學習等),達到預(yù)測不確定事件的目的。
幫助分用戶析結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù)中的趨勢、模式和關(guān)系,并運用這些指標來預(yù)測將來事件,為采取措施提供依據(jù)。
4、語義引擎
語義引擎,指通過為已有數(shù)據(jù)添加語義的操作,提高用戶互聯(lián)網(wǎng)搜索體驗。
5、數(shù)據(jù)質(zhì)量管理
指對數(shù)據(jù)全生命周期的每個階段(計劃、獲取、存儲、共享、維護、應(yīng)用、消亡等)中可能引發(fā)的各類數(shù)據(jù)質(zhì)量問題,進行識別、度量、監(jiān)控、預(yù)警等操作,以提高數(shù)據(jù)質(zhì)量的一系列管理活動。
以上是從大的方面來講,具體來說大數(shù)據(jù)的框架技術(shù)有很多,這里列舉其中一些:
文件存儲:Hadoop HDFS、Tachyon、KFS
離線計算:Hadoop MapReduce、Spark
流式、實時計算:Storm、Spark Streaming、S4、Heron
K-V、NOSQL數(shù)據(jù)庫:HBase、Redis、MongoDB
資源管理:YARN、Mesos
日志收集:Flume、Scribe、Logstash、Kibana
消息系統(tǒng):Kafka、StormMQ、ZeroMQ、RabbitMQ
查詢分析:Hive、Impala、Pig、Presto、Phoenix、SparkSQL、Drill、Flink、Kylin、Druid
分布式協(xié)調(diào)服務(wù):Zookeeper
集群管理與監(jiān)控:Ambari、Ganglia、Nagios、Cloudera Manager
數(shù)據(jù)挖掘、機器學習:Mahout、Spark MLLib
數(shù)據(jù)同步:Sqoop
任務(wù)調(diào)度:Oozie
······
想要學習更多關(guān)于大數(shù)據(jù)的知識可以加群和志同道合的人一起交流一下啊[ ]
特點:
它們可以處理超大量的數(shù)據(jù)。
它們運行在便宜的PC服務(wù)器集群上。
PC集群擴充起來非常方便并且成本很低,避免了“sharding”操作的復雜性和成本。
它們擊碎了性能瓶頸。
NoSQL的支持者稱,通過NoSQL架構(gòu)可以省去將Web或Java應(yīng)用和數(shù)據(jù)轉(zhuǎn)換成SQL友好格式的時間,執(zhí)行速度變得更快。
“SQL并非適用于所有的程序代碼,” 對于那些繁重的重復操作的數(shù)據(jù),SQL值得花錢。但是當數(shù)據(jù)庫結(jié)構(gòu)非常簡單時,SQL可能沒有太大用處。
沒有過多的操作。
雖然NoSQL的支持者也承認關(guān)系數(shù)據(jù)庫提供了無可比擬的功能集合,而且在數(shù)據(jù)完整性上也發(fā)揮絕對穩(wěn)定,他們同時也表示,企業(yè)的具體需求可能沒有那么多。
Bootstrap支持
因為NoSQL項目都是開源的,因此它們?nèi)狈?yīng)商提供的正式支持。這一點它們與大多數(shù)開源項目一樣,不得不從社區(qū)中尋求支持。
優(yōu)點:
易擴展
NoSQL數(shù)據(jù)庫種類繁多,但是一個共同的特點都是去掉關(guān)系數(shù)據(jù)庫的關(guān)系型特性。數(shù)據(jù)之間無關(guān)系,這樣就非常容易擴展。也無形之間,在架構(gòu)的層面上帶來了可擴展的能力。
大數(shù)據(jù)量,高性能
NoSQL數(shù)據(jù)庫都具有非常高的讀寫性能,尤其在大數(shù)據(jù)量下,同樣表現(xiàn)優(yōu)秀。這得益于它的無關(guān)系性,數(shù)據(jù)庫的結(jié)構(gòu)簡單。一般MySQL使用 Query Cache,每次表的更新Cache就失效,是一種大粒度的Cache,在針對web2.0的交互頻繁的應(yīng)用,Cache性能不高。而NoSQL的 Cache是記錄級的,是一種細粒度的Cache,所以NoSQL在這個層面上來說就要性能高很多了。
靈活的數(shù)據(jù)模型
NoSQL無需事先為要存儲的數(shù)據(jù)建立字段,隨時可以存儲自定義的數(shù)據(jù)格式。而在關(guān)系數(shù)據(jù)庫里,增刪字段是一件非常麻煩的事情。如果是非常大數(shù)據(jù)量的表,增加字段簡直就是一個噩夢。這點在大數(shù)據(jù)量的web2.0時代尤其明顯。
高可用
NoSQL在不太影響性能的情況,就可以方便的實現(xiàn)高可用的架構(gòu)。比如Cassandra,HBase模型,通過復制模型也能實現(xiàn)高可用。
主要應(yīng)用:
Apache HBase
這個大數(shù)據(jù)管理平臺建立在谷歌強大的BigTable管理引擎基礎(chǔ)上。作為具有開源、Java編碼、分布式多個優(yōu)勢的數(shù)據(jù)庫,Hbase最初被設(shè)計應(yīng)用于Hadoop平臺,而這一強大的數(shù)據(jù)管理工具,也被Facebook采用,用于管理消息平臺的龐大數(shù)據(jù)。
Apache Storm
用于處理高速、大型數(shù)據(jù)流的分布式實時計算系統(tǒng)。Storm為Apache Hadoop添加了可靠的實時數(shù)據(jù)處理功能,同時還增加了低延遲的儀表板、安全警報,改進了原有的操作方式,幫助企業(yè)更有效率地捕獲商業(yè)機會、發(fā)展新業(yè)務(wù)。
Apache Spark
該技術(shù)采用內(nèi)存計算,從多迭代批量處理出發(fā),允許將數(shù)據(jù)載入內(nèi)存做反復查詢,此外還融合數(shù)據(jù)倉庫、流處理和圖計算等多種計算范式,Spark用Scala語言實現(xiàn),構(gòu)建在HDFS上,能與Hadoop很好的結(jié)合,而且運行速度比MapReduce快100倍。
Apache Hadoop
該技術(shù)迅速成為了大數(shù)據(jù)管理標準之一。當它被用來管理大型數(shù)據(jù)集時,對于復雜的分布式應(yīng)用,Hadoop體現(xiàn)出了非常好的性能,平臺的靈活性使它可以運行在商用硬件系統(tǒng),它還可以輕松地集成結(jié)構(gòu)化、半結(jié)構(gòu)化和甚至非結(jié)構(gòu)化數(shù)據(jù)集。
Apache Drill
你有多大的數(shù)據(jù)集?其實無論你有多大的數(shù)據(jù)集,Drill都能輕松應(yīng)對。通過支持HBase、Cassandra和MongoDB,Drill建立了交互式分析平臺,允許大規(guī)模數(shù)據(jù)吞吐,而且能很快得出結(jié)果。
Apache Sqoop
也許你的數(shù)據(jù)現(xiàn)在還被鎖定于舊系統(tǒng)中,Sqoop可以幫你解決這個問題。這一平臺采用并發(fā)連接,可以將數(shù)據(jù)從關(guān)系數(shù)據(jù)庫系統(tǒng)方便地轉(zhuǎn)移到Hadoop中,可以自定義數(shù)據(jù)類型以及元數(shù)據(jù)傳播的映射。事實上,你還可以將數(shù)據(jù)(如新的數(shù)據(jù))導入到HDFS、Hive和Hbase中。
Apache Giraph
這是功能強大的圖形處理平臺,具有很好可擴展性和可用性。該技術(shù)已經(jīng)被Facebook采用,Giraph可以運行在Hadoop環(huán)境中,可以將它直接部署到現(xiàn)有的Hadoop系統(tǒng)中。通過這種方式,你可以得到強大的分布式作圖能力,同時還能利用上現(xiàn)有的大數(shù)據(jù)處理引擎。
Cloudera Impala
Impala模型也可以部署在你現(xiàn)有的Hadoop群集上,監(jiān)視所有的查詢。該技術(shù)和MapReduce一樣,具有強大的批處理能力,而且Impala對于實時的SQL查詢也有很好的效果,通過高效的SQL查詢,你可以很快的了解到大數(shù)據(jù)平臺上的數(shù)據(jù)。
Gephi
它可以用來對信息進行關(guān)聯(lián)和量化處理,通過為數(shù)據(jù)創(chuàng)建功能強大的可視化效果,你可以從數(shù)據(jù)中得到不一樣的洞察力。Gephi已經(jīng)支持多個圖表類型,而且可以在具有上百萬個節(jié)點的大型網(wǎng)絡(luò)上運行。Gephi具有活躍的用戶社區(qū),Gephi還提供了大量的插件,可以和現(xiàn)有系統(tǒng)完美的集成到一起,它還可以對復雜的IT連接、分布式系統(tǒng)中各個節(jié)點、數(shù)據(jù)流等信息進行可視化分析。
MongoDB
這個堅實的平臺一直被很多組織推崇,它在大數(shù)據(jù)管理上有極好的性能。MongoDB最初是由DoubleClick公司的員工創(chuàng)建,現(xiàn)在該技術(shù)已經(jīng)被廣泛的應(yīng)用于大數(shù)據(jù)管理。MongoDB是一個應(yīng)用開源技術(shù)開發(fā)的NoSQL數(shù)據(jù)庫,可以用于在JSON這樣的平臺上存儲和處理數(shù)據(jù)。目前,紐約時報、Craigslist以及眾多企業(yè)都采用了MongoDB,幫助他們管理大型數(shù)據(jù)集。(Couchbase服務(wù)器也作為一個參考)。
十大頂尖公司:
Amazon Web Services
Forrester將AWS稱為“云霸主”,談到云計算領(lǐng)域的大數(shù)據(jù),那就不得不提到亞馬遜。該公司的Hadoop產(chǎn)品被稱為EMR(Elastic Map Reduce),AWS解釋這款產(chǎn)品采用了Hadoop技術(shù)來提供大數(shù)據(jù)管理服務(wù),但它不是純開源Hadoop,經(jīng)過修改后現(xiàn)在被專門用在AWS云上。
Forrester稱EMR有很好的市場前景。很多公司基于EMR為客戶提供服務(wù),有一些公司將EMR應(yīng)用于數(shù)據(jù)查詢、建模、集成和管理。而且AWS還在創(chuàng)新,F(xiàn)orrester稱未來EMR可以基于工作量的需要自動縮放調(diào)整大小。亞馬遜計劃為其產(chǎn)品和服務(wù)提供更強大的EMR支持,包括它的RedShift數(shù)據(jù)倉庫、新公布的Kenesis實時處理引擎以及計劃中的NoSQL數(shù)據(jù)庫和商業(yè)智能工具。不過AWS還沒有自己的Hadoop發(fā)行版。
Cloudera
Cloudera有開源Hadoop的發(fā)行版,這個發(fā)行版采用了Apache Hadoop開源項目的很多技術(shù),不過基于這些技術(shù)的發(fā)行版也有很大的進步。Cloudera為它的Hadoop發(fā)行版開發(fā)了很多功能,包括Cloudera管理器,用于管理和監(jiān)控,以及名為Impala的SQL引擎等。Cloudera的Hadoop發(fā)行版基于開源Hadoop,但也不是純開源的產(chǎn)品。當Cloudera的客戶需要Hadoop不具備的某些功能時,Cloudera的工程師們就會實現(xiàn)這些功能,或者找一個擁有這項技術(shù)的合作伙伴。Forrester表示:“Cloudera的創(chuàng)新方法忠于核心Hadoop,但因為其可實現(xiàn)快速創(chuàng)新并積極滿足客戶需求,這一點使它不同于其他那些供應(yīng)商?!蹦壳?,Cloudera的平臺已經(jīng)擁有200多個付費客戶,一些客戶在Cloudera的技術(shù)支持下已經(jīng)可以跨1000多個節(jié)點實現(xiàn)對PB級數(shù)據(jù)的有效管理。
Hortonworks
和Cloudera一樣,Hortonworks是一個純粹的Hadoop技術(shù)公司。與Cloudera不同的是,Hortonworks堅信開源Hadoop比任何其他供應(yīng)商的Hadoop發(fā)行版都要強大。Hortonworks的目標是建立Hadoop生態(tài)圈和Hadoop用戶社區(qū),推進開源項目的發(fā)展。Hortonworks平臺和開源Hadoop聯(lián)系緊密,公司管理人員表示這會給用戶帶來好處,因為它可以防止被供應(yīng)商套牢(如果Hortonworks的客戶想要離開這個平臺,他們可以輕松轉(zhuǎn)向其他開源平臺)。這并不是說Hortonworks完全依賴開源Hadoop技術(shù),而是因為該公司將其所有開發(fā)的成果回報給了開源社區(qū),比如Ambari,這個工具就是由Hortonworks開發(fā)而成,用來填充集群管理項目漏洞。Hortonworks的方案已經(jīng)得到了Teradata、Microsoft、Red Hat和SAP這些供應(yīng)商的支持。
IBM
當企業(yè)考慮一些大的IT項目時,很多人首先會想到IBM。IBM是Hadoop項目的主要參與者之一,F(xiàn)orrester稱IBM已有100多個Hadoop部署,它的很多客戶都有PB級的數(shù)據(jù)。IBM在網(wǎng)格計算、全球數(shù)據(jù)中心和企業(yè)大數(shù)據(jù)項目實施等眾多領(lǐng)域有著豐富的經(jīng)驗。“IBM計劃繼續(xù)整合SPSS分析、高性能計算、BI工具、數(shù)據(jù)管理和建模、應(yīng)對高性能計算的工作負載管理等眾多技術(shù)?!?/p>
Intel
和AWS類似,英特爾不斷改進和優(yōu)化Hadoop使其運行在自己的硬件上,具體來說,就是讓Hadoop運行在其至強芯片上,幫助用戶打破Hadoop系統(tǒng)的一些限制,使軟件和硬件結(jié)合的更好,英特爾的Hadoop發(fā)行版在上述方面做得比較好。Forrester指出英特爾在最近才推出這個產(chǎn)品,所以公司在未來還有很多改進的可能,英特爾和微軟都被認為是Hadoop市場上的潛力股。
MapR Technologies
MapR的Hadoop發(fā)行版目前為止也許是最好的了,不過很多人可能都沒有聽說過。Forrester對Hadoop用戶的調(diào)查顯示,MapR的評級最高,其發(fā)行版在架構(gòu)和數(shù)據(jù)處理能力上都獲得了最高分。MapR已將一套特殊功能融入其Hadoop發(fā)行版中。例如網(wǎng)絡(luò)文件系統(tǒng)(NFS)、災(zāi)難恢復以及高可用性功能。Forrester說MapR在Hadoop市場上沒有Cloudera和Hortonworks那樣的知名度,MapR要成為一個真正的大企業(yè),還需要加強伙伴關(guān)系和市場營銷。
Microsoft
微軟在開源軟件問題上一直很低調(diào),但在大數(shù)據(jù)形勢下,它不得不考慮讓Windows也兼容Hadoop,它還積極投入到開源項目中,以更廣泛地推動Hadoop生態(tài)圈的發(fā)展。我們可以在微軟的公共云Windows Azure HDInsight產(chǎn)品中看到其成果。微軟的Hadoop服務(wù)基于Hortonworks的發(fā)行版,而且是為Azure量身定制的。
微軟也有一些其他的項目,包括名為Polybase的項目,讓Hadoop查詢實現(xiàn)了SQLServer查詢的一些功能。Forrester說:“微軟在數(shù)據(jù)庫、數(shù)據(jù)倉庫、云、OLAP、BI、電子表格(包括PowerPivot)、協(xié)作和開發(fā)工具市場上有很大優(yōu)勢,而且微軟擁有龐大的用戶群,但要在Hadoop這個領(lǐng)域成為行業(yè)領(lǐng)導者還有很遠的路要走?!?/p>
Pivotal Software
EMC和Vmware部分大數(shù)據(jù)業(yè)務(wù)分拆組合產(chǎn)生了Pivotal。Pivotal一直努力構(gòu)建一個性能優(yōu)越的Hadoop發(fā)行版,為此,Pivotal在開源Hadoop的基礎(chǔ)上又添加了一些新的工具,包括一個名為HAWQ的SQL引擎以及一個專門解決大數(shù)據(jù)問題的Hadoop應(yīng)用。Forrester稱Pivotal Hadoop平臺的優(yōu)勢在于它整合了Pivotal、EMC、Vmware的眾多技術(shù),Pivotal的真正優(yōu)勢實際上等于EMC和Vmware兩大公司為其撐腰。到目前為止,Pivotal的用戶還不到100個,而且大多是中小型客戶。
Teradata
對于Teradata來說,Hadoop既是一種威脅也是一種機遇。數(shù)據(jù)管理,特別是關(guān)于SQL和關(guān)系數(shù)據(jù)庫這一領(lǐng)域是Teradata的專長。所以像Hadoop這樣的NoSQL平臺崛起可能會威脅到Teradata。相反,Teradata接受了Hadoop,通過與Hortonworks合作,Teradata在Hadoop平臺集成了SQL技術(shù),這使Teradata的客戶可以在Hadoop平臺上方便地使用存儲在Teradata數(shù)據(jù)倉庫中的數(shù)據(jù)。
AMPLab
通過將數(shù)據(jù)轉(zhuǎn)變?yōu)樾畔?,我們才可以理解世界,而這也正是AMPLab所做的。AMPLab致力于機器學習、數(shù)據(jù)挖掘、數(shù)據(jù)庫、信息檢索、自然語言處理和語音識別等多個領(lǐng)域,努力改進對信息包括不透明數(shù)據(jù)集內(nèi)信息的甄別技術(shù)。除了Spark,開源分布式SQL查詢引擎Shark也源于AMPLab,Shark具有極高的查詢效率,具有良好的兼容性和可擴展性。近幾年的發(fā)展使計算機科學進入到全新的時代,而AMPLab為我們設(shè)想一個運用大數(shù)據(jù)、云計算、通信等各種資源和技術(shù)靈活解決難題的方案,以應(yīng)對越來越復雜的各種難題。
NoSQL,泛指非關(guān)系型的數(shù)據(jù)庫。隨著互聯(lián)網(wǎng)web2.0網(wǎng)站的興起,傳統(tǒng)的關(guān)系數(shù)據(jù)庫在處理web2.0網(wǎng)站,特別是超大規(guī)模和高并發(fā)的SNS類型的web2.0純動態(tài)網(wǎng)站已經(jīng)顯得力不從心,出現(xiàn)了很多難以克服的問題,而非關(guān)系型的數(shù)據(jù)庫則由于其本身的特點得到了非常迅速的發(fā)展。
常見的Nosql數(shù)據(jù)庫有:
一、Redis數(shù)據(jù)庫
Redis(RemoteDictionaryServer),即遠程字典服務(wù),是一個開源的使用ANSIC語言編寫、支持網(wǎng)絡(luò)、可基于內(nèi)存亦可持久化的日志型、Key-Value數(shù)據(jù)庫,并提供多種語言的API。從2010年3月15日起,Redis的開發(fā)工作由VMware主持。從2013年5月開始,Redis的開發(fā)由Pivotal贊助。
二、MongoDB數(shù)據(jù)庫
MongoDB是一個介于關(guān)系數(shù)據(jù)庫和非關(guān)系數(shù)據(jù)庫之間的產(chǎn)品,是非關(guān)系數(shù)據(jù)庫當中功能最豐富,最像關(guān)系數(shù)據(jù)庫的。它支持的數(shù)據(jù)結(jié)構(gòu)非常松散,是類似json的bson格式,因此可以存儲比較復雜的數(shù)據(jù)類型。
Mongo最大的特點是它支持的查詢語言非常強大,其語法有點類似于面向?qū)ο蟮牟樵冋Z言,幾乎可以實現(xiàn)類似關(guān)系數(shù)據(jù)庫單表查詢的絕大部分功能,而且還支持對數(shù)據(jù)建立索引。
擴展資料:
對于NoSQL并沒有一個明確的范圍和定義,但是他們都普遍存在下面一些共同特征:
一、易擴展
NoSQL數(shù)據(jù)庫種類繁多,但是一個共同的特點都是去掉關(guān)系數(shù)據(jù)庫的關(guān)系型特性。數(shù)據(jù)之間無關(guān)系,這樣就非常容易擴展。無形之間,在架構(gòu)的層面上帶來了可擴展的能力。
二、大數(shù)據(jù)量,高性能
NoSQL數(shù)據(jù)庫都具有非常高的讀寫性能,尤其在大數(shù)據(jù)量下,同樣表現(xiàn)優(yōu)秀。這得益于它的無關(guān)系性,數(shù)據(jù)庫的結(jié)構(gòu)簡單。一般MySQL使用Query Cache。NoSQL的Cache是記錄級的,是一種細粒度的Cache,所以NoSQL在這個層面上來說性能就要高很多。
三、靈活的數(shù)據(jù)模型
NoSQL無須事先為要存儲的數(shù)據(jù)建立字段,隨時可以存儲自定義的數(shù)據(jù)格式。而在關(guān)系數(shù)據(jù)庫里,增刪字段是一件非常麻煩的事情。如果是非常大數(shù)據(jù)量的表,增加字段簡直就是——個噩夢。這點在大數(shù)據(jù)量的Web2.0時代尤其明顯。
四、高可用
NoSQL在不太影響性能的情況,就可以方便地實現(xiàn)高可用的架構(gòu)。比如Cassandra、HBase模型,通過復制模型也能實現(xiàn)高可用。
參考資料來源:百度百科-NoSQL
網(wǎng)頁標題:關(guān)于nosql的視頻,nosql使用
網(wǎng)站網(wǎng)址:http://aaarwkj.com/article26/dsiggjg.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供手機網(wǎng)站建設(shè)、Google、移動網(wǎng)站建設(shè)、、自適應(yīng)網(wǎng)站、外貿(mào)網(wǎng)站建設(shè)
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)