1、首先點(diǎn)擊鍵盤 win+r,打開運(yùn)行窗口;在窗口中輸入“cmd",點(diǎn)擊確定,打開windows命令行窗口。
長(zhǎng)安ssl適用于網(wǎng)站、小程序/APP、API接口等需要進(jìn)行數(shù)據(jù)傳輸應(yīng)用場(chǎng)景,ssl證書未來市場(chǎng)廣闊!成為成都創(chuàng)新互聯(lián)的ssl證書銷售渠道,可以享受市場(chǎng)價(jià)格4-6折優(yōu)惠!如果有意向歡迎電話聯(lián)系或者加微信:18982081108(備注:SSL證書合作)期待與您的合作!
2、在cmd命令行窗口中輸入"python",進(jìn)入python交互窗口。
3、引入matplotlib模塊的pyplot()函數(shù),并重命名為py;引入numpy模塊,并重命名為np。
4、使用函數(shù)np.arrange(-5,5,0.01)創(chuàng)建變量x的取值范圍,是一個(gè)一維數(shù)組,使用y=2**x,創(chuàng)建y是與自變量x相對(duì)應(yīng)的一維數(shù)組。
5、使用函數(shù)plt.plot(x,y)繪制指數(shù)函數(shù)y=2**x的函數(shù)圖像。
6、最后使用函數(shù)plt.show()顯示整個(gè)一元一次函數(shù)的圖像,就完成了。
求擬合函數(shù),首先要有因變量和自變量的一組測(cè)試或?qū)嶒?yàn)數(shù)據(jù),根據(jù)已知的曲線y=f(x),擬合出Ex和En系數(shù)。當(dāng)用擬合出的函數(shù)與實(shí)驗(yàn)數(shù)據(jù)吻合程度愈高,說明擬合得到的Ex和En系數(shù)是合理的。吻合程度用相關(guān)系數(shù)來衡量,即R^2。首先,我們需要打開Python的shell工具,在shell當(dāng)中新建一個(gè)對(duì)象member,對(duì)member進(jìn)行賦值。 2、這里我們所創(chuàng)建的列表當(dāng)中的元素均屬于字符串類型,同時(shí)我們也可以在列表當(dāng)中創(chuàng)建數(shù)字以及混合類型的元素。 3、先來使用append函數(shù)對(duì)已經(jīng)創(chuàng)建的列表添加元素,具體如下圖所示,會(huì)自動(dòng)在列表的最后的位置添加一個(gè)元素。 4、再來使用extend對(duì)來添加列表元素,如果是添加多個(gè)元素,需要使用列表的形式。 5、使用insert函數(shù)添加列表元素,insert中有兩個(gè)參數(shù),第一個(gè)參數(shù)即為插入的位置,第二個(gè)參數(shù)即為插入的元素。origin擬合中參數(shù)值是程序擬合的結(jié)果,自定義函數(shù)可以設(shè)置參數(shù)的初值,也可以不設(shè)定參數(shù)的初值。
一般而言,擬合結(jié)果不會(huì)因?yàn)槌踔档牟煌刑蟮钠?,如果偏差很大,說明數(shù)據(jù)和函數(shù)不太匹配,需要對(duì)函數(shù)進(jìn)行改正。X0的迭代初始值選擇與求解方程,有著密切的關(guān)系。不同的初始值得出的系數(shù)是完全不一樣的。這要通過多次選擇和比較,才能得到較為合理的初值。一般的方法,可以通過隨機(jī)數(shù)并根據(jù)方程的特性來初選。
您可以直接調(diào)用
import math
math.pow( 2, x )
或者
import math
def zhishu(x):
return math.pow(2, x)
其中有兩個(gè)非常漂亮的指數(shù)函數(shù)圖就是用python的matplotlib畫出來的。這一期,我們將要介紹如何利用python繪制出如下指數(shù)函數(shù)。
圖 1 a1圖 1 a1
我們知道當(dāng)0 ,指數(shù)函數(shù) 是單調(diào)遞減的,當(dāng)a1 時(shí),指數(shù)函數(shù)是單調(diào)遞增的。所以我們首先要定義出指數(shù)函數(shù),將a值做不同初始化
import math
...
def exponential_func(x, a): #定義指數(shù)函數(shù)
y=math.pow(a, x)
return y
然后,利用numpy構(gòu)造出自變量,利用上面定義的指數(shù)函數(shù)來計(jì)算出因變量
X=np.linspace(-4, 4, 40) #構(gòu)造自變量組
Y=[exponential_func(x) for x in X] #求函數(shù)值
有了自變量和因變量的一些散點(diǎn),那么就可以模擬我們平時(shí)畫函數(shù)操作——描點(diǎn)繪圖,利用下面代碼就可以實(shí)現(xiàn)
import math
import numpy as np
import matplotlib.pyplot as plt
import mpl_toolkits.axisartist as axisartist #導(dǎo)入坐標(biāo)軸加工模塊
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False
fig=plt.figure(figsize=(6,4)) #新建畫布
ax=axisartist.Subplot(fig,111) #使用axisartist.Subplot方法創(chuàng)建一個(gè)繪圖區(qū)對(duì)象ax
fig.add_axes(ax) #將繪圖區(qū)對(duì)象添加到畫布中
def exponential_func(x, a=2): #定義指數(shù)函數(shù)
y=math.pow(a, x)
return y
X=np.linspace(-4, 4, 40) #構(gòu)造自變量組
Y=[exponential_func(x) for x in X] #求函數(shù)值
ax.plot(X, Y) #繪制指數(shù)函數(shù)
plt.show()
圖 2 a=2
圖2雖簡(jiǎn)單,但麻雀雖小五臟俱全,指數(shù)函數(shù)該有都有,接下來是如何讓其看起來像我們?cè)谧鲌D紙上面畫的那么美觀,這里重點(diǎn)介紹axisartist 坐標(biāo)軸加工類,在的時(shí)候我們已經(jīng)用過了,這里就不再多說了。我們只需要在上面代碼后面加上一些代碼來將坐標(biāo)軸好好打扮一番。
圖 3 a1 完整代碼# -*- coding: utf-8 -*-圖 3 a1 完整代碼# -*- coding: utf-8 -*-"""Created on Sun Feb 16 10:19:23 2020project name:@author: 帥帥de三叔"""import mathimport numpy as npimport matplotlib.pyplot as pltimport mp
名稱欄目:python2指數(shù)函數(shù),Python指數(shù)
轉(zhuǎn)載來源:http://aaarwkj.com/article46/dssjheg.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供定制開發(fā)、自適應(yīng)網(wǎng)站、服務(wù)器托管、網(wǎng)站排名、網(wǎng)站收錄、網(wǎng)站設(shè)計(jì)
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請(qǐng)盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如需處理請(qǐng)聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來源: 創(chuàng)新互聯(lián)