2. 什么是NoSQL?
成都創(chuàng)新互聯(lián)是專業(yè)的梁河網(wǎng)站建設(shè)公司,梁河接單;提供成都網(wǎng)站制作、網(wǎng)站設(shè)計,網(wǎng)頁設(shè)計,網(wǎng)站設(shè)計,建網(wǎng)站,PHP網(wǎng)站建設(shè)等專業(yè)做網(wǎng)站服務(wù);采用PHP框架,可快速的進(jìn)行梁河網(wǎng)站開發(fā)網(wǎng)頁制作和功能擴(kuò)展;專業(yè)做搜索引擎喜愛的網(wǎng)站,專業(yè)的做網(wǎng)站團(tuán)隊,希望更多企業(yè)前來合作!
2.1 NoSQL 概述
NoSQL(NoSQL = Not Only SQL ),意即“不僅僅是SQL”,
泛指非關(guān)系型的數(shù)據(jù)庫。隨著互聯(lián)網(wǎng)web2.0網(wǎng)站的興起,傳統(tǒng)的關(guān)系數(shù)據(jù)庫在應(yīng)付web2.0網(wǎng)站,特別是超大規(guī)模和高并發(fā)的SNS類型的web2.0純動態(tài)網(wǎng)站已經(jīng)顯得力不從心,暴露了很多難以克服的問題,而非關(guān)系型的數(shù)據(jù)庫則由于其本身的特點得到了非常迅速的發(fā)展。NoSQL數(shù)據(jù)庫的產(chǎn)生就是為了解決大規(guī)模數(shù)據(jù)集合多重數(shù)據(jù)種類帶來的挑戰(zhàn),尤其是大數(shù)據(jù)應(yīng)用難題,包括超大規(guī)模數(shù)據(jù)的存儲。
(例如谷歌或Facebook每天為他們的用戶收集萬億比特的數(shù)據(jù))。這些類型的數(shù)據(jù)存儲不需要固定的模式,無需多余操作就可以橫向擴(kuò)展。
2.2 NoSQL代表
MongDB、 Redis、Memcache
3. 關(guān)系型數(shù)據(jù)庫與NoSQL的區(qū)別?
3.1 RDBMS
高度組織化結(jié)構(gòu)化數(shù)據(jù)
結(jié)構(gòu)化查詢語言(SQL)
數(shù)據(jù)和關(guān)系都存儲在單獨的表中。
數(shù)據(jù)操縱語言,數(shù)據(jù)定義語言
嚴(yán)格的一致性
基礎(chǔ)事務(wù)
ACID
關(guān)系型數(shù)據(jù)庫遵循ACID規(guī)則
事務(wù)在英文中是transaction,和現(xiàn)實世界中的交易很類似,它有如下四個特性:
A (Atomicity) 原子性
原子性很容易理解,也就是說事務(wù)里的所有操作要么全部做完,要么都不做,事務(wù)成功的條件是事務(wù)里的所有操作都成功,只要有一個操作失敗,整個事務(wù)就失敗,需要回滾。比如銀行轉(zhuǎn)賬,從A賬戶轉(zhuǎn)100元至B賬戶,分為兩個步驟:1)從A賬戶取100元;2)存入100元至B賬戶。這兩步要么一起完成,要么一起不完成,如果只完成第一步,第二步失敗,錢會莫名其妙少了100元。
C (Consistency) 一致性
一致性也比較容易理解,也就是說數(shù)據(jù)庫要一直處于一致的狀態(tài),事務(wù)的運(yùn)行不會改變數(shù)據(jù)庫原本的一致性約束。
I (Isolation) 獨立性
所謂的獨立性是指并發(fā)的事務(wù)之間不會互相影響,如果一個事務(wù)要訪問的數(shù)據(jù)正在被另外一個事務(wù)修改,只要另外一個事務(wù)未提交,它所訪問的數(shù)據(jù)就不受未提交事務(wù)的影響。比如現(xiàn)有有個交易是從A賬戶轉(zhuǎn)100元至B賬戶,在這個交易還未完成的情況下,如果此時B查詢自己的賬戶,是看不到新增加的100元的
D (Durability) 持久性
持久性是指一旦事務(wù)提交后,它所做的修改將會永久的保存在數(shù)據(jù)庫上,即使出現(xiàn)宕機(jī)也不會丟失。
3.2 NoSQL
代表著不僅僅是SQL
沒有聲明性查詢語言
沒有預(yù)定義的模式
鍵 - 值對存儲,列存儲,文檔存儲,圖形數(shù)據(jù)庫
最終一致性,而非ACID屬性
非結(jié)構(gòu)化和不可預(yù)知的數(shù)據(jù)
CAP定理
高性能,高可用性和可伸縮性
分布式數(shù)據(jù)庫中的CAP原理(了解)
CAP定理:
Consistency(一致性), 數(shù)據(jù)一致更新,所有數(shù)據(jù)變動都是同步的
Availability(可用性), 好的響應(yīng)性能
Partition tolerance(分區(qū)容錯性) 可靠性
P: 系統(tǒng)中任意信息的丟失或失敗不會影響系統(tǒng)的繼續(xù)運(yùn)作。
定理:任何分布式系統(tǒng)只可同時滿足二點,沒法三者兼顧。
CAP理論的核心是:一個分布式系統(tǒng)不可能同時很好的滿足一致性,可用性和分區(qū)容錯性這三個需求,
因此,根據(jù) CAP 原理將 NoSQL 數(shù)據(jù)庫分成了滿足 CA 原則、滿足 CP 原則和滿足 AP 原則三 大類:
CA - 單點集群,滿足一致性,可用性的系統(tǒng),通常在可擴(kuò)展性上不太強(qiáng)大。
CP - 滿足一致性,分區(qū)容忍性的系統(tǒng),通常性能不是特別高。
AP - 滿足可用性,分區(qū)容忍性的系統(tǒng),通常可能對一致性要求低一些。
CAP理論就是說在分布式存儲系統(tǒng)中,最多只能實現(xiàn)上面的兩點。
而由于當(dāng)前的網(wǎng)絡(luò)硬件肯定會出現(xiàn)延遲丟包等問題,所以分區(qū)容忍性是我們必須需要實現(xiàn)的。
所以我們只能在一致性和可用性之間進(jìn)行權(quán)衡,沒有NoSQL系統(tǒng)能同時保證這三點。
說明:C:強(qiáng)一致性 A:高可用性 P:分布式容忍性
舉例:
CA:傳統(tǒng)Oracle數(shù)據(jù)庫
AP:大多數(shù)網(wǎng)站架構(gòu)的選擇
CP:Redis、Mongodb
注意:分布式架構(gòu)的時候必須做出取舍。
一致性和可用性之間取一個平衡。多余大多數(shù)web應(yīng)用,其實并不需要強(qiáng)一致性。
因此犧牲C換取P,這是目前分布式數(shù)據(jù)庫產(chǎn)品的方向。
4. 當(dāng)下NoSQL的經(jīng)典應(yīng)用
當(dāng)下的應(yīng)用是 SQL 與 NoSQL 一起使用的。
代表項目:阿里巴巴商品信息的存放。
去 IOE 化。
ps:I 是指 IBM 的小型機(jī),很貴的,好像好幾萬一臺;O 是指 Oracle 數(shù)據(jù)庫,也很貴的,好幾萬呢;M 是指 EMC 的存儲設(shè)備,也很貴的。
難點:
數(shù)據(jù)類型多樣性。
數(shù)據(jù)源多樣性和變化重構(gòu)。
數(shù)據(jù)源改造而服務(wù)平臺不需要大面積重構(gòu)。
大數(shù)據(jù)分析師應(yīng)該要學(xué)的知識有,統(tǒng)計概率理論基礎(chǔ),軟件操作結(jié)合分析模型進(jìn)行實際運(yùn)用,數(shù)據(jù)挖掘或者數(shù)據(jù)分析方向性選擇,數(shù)據(jù)分析業(yè)務(wù)應(yīng)用。
1、統(tǒng)計概率理論基礎(chǔ)
這是重中之重,千里之臺,起于壘土,最重要的就是最下面的那幾層。統(tǒng)計思維,統(tǒng)計方法,這里首先是市場調(diào)研數(shù)據(jù)的獲取與整理,然后是最簡單的描述性分析,其次是常用的推斷性分析,方差分析,到高級的相關(guān),回歸等多元統(tǒng)計分析,掌握了這些原理,才能進(jìn)行下一步。
2、軟件操作結(jié)合分析模型進(jìn)行實際運(yùn)用
關(guān)于數(shù)據(jù)分析主流軟件有(從上手度從易到難):Excel,SPSS,Stata,R,SAS等。首先是學(xué)會怎樣操作這些軟件,然后是利用軟件從數(shù)據(jù)的清洗開始一步步進(jìn)行處理,分析,最后輸出結(jié)果,檢驗及解讀數(shù)據(jù)。
3、數(shù)據(jù)挖掘或者數(shù)據(jù)分析方向性選擇
其實數(shù)據(jù)分析也包含數(shù)據(jù)挖掘,但在工作中做到后面會細(xì)分到分析方向和挖掘方向,兩者已有區(qū)別,關(guān)于數(shù)據(jù)挖掘也涉及到許多模型算法,如:關(guān)聯(lián)法則、神經(jīng)網(wǎng)絡(luò)、決策樹、遺傳算法、可視技術(shù)等。
4、數(shù)據(jù)分析業(yè)務(wù)應(yīng)用
這一步也是最難學(xué)習(xí)的一步,行業(yè)有別,業(yè)務(wù)不同,業(yè)務(wù)的不同所運(yùn)用的分析方法亦有區(qū)分,實際工作是解決業(yè)務(wù)問題,因此對業(yè)務(wù)的洞察能力非常重要。擴(kuò)展資料
分析工作內(nèi)容
1、搜索引擎分析師(Search Engine Optimization Strategy Analyst,簡稱SEO分析師)是一項新興信息技術(shù)職業(yè),主要關(guān)注搜索引擎動態(tài),修建網(wǎng)站,拓展網(wǎng)絡(luò)營銷渠道,網(wǎng)站內(nèi)部優(yōu)化,流量數(shù)據(jù)分析,策劃外鏈執(zhí)行方案,負(fù)責(zé)競價推廣。
2、SEO分析師需要精通商業(yè)搜索引擎相關(guān)知識與市場運(yùn)作。通過編程,HTML,CSS,JavaScript,MicrosoftASP.NET,Perl,PHP,Python等建立網(wǎng)站進(jìn)行各種以用戶體驗為主同時帶給公司盈利但可能失敗的項目嘗試。
關(guān)系數(shù)據(jù)庫經(jīng)過幾十年的發(fā)展,已經(jīng)非常成熟,但同時也存在不足:
表結(jié)構(gòu)是強(qiáng)約束的,業(yè)務(wù)變更時擴(kuò)充很麻煩。
如果對大數(shù)據(jù)量的表進(jìn)行統(tǒng)計運(yùn)算,I/O會很高,因為即使只針對某列進(jìn)行運(yùn)算,也需要將整行數(shù)據(jù)讀入內(nèi)存。
全文搜索只能使用 Like 進(jìn)行整表掃描,性能非常低。
針對這些不足,產(chǎn)生了不同的 NoSQL 解決方案,在某些場景下比關(guān)系數(shù)據(jù)庫更有優(yōu)勢,但同時也犧牲了某些特性,所以不能片面的迷信某種方案,應(yīng)將其作為 SQL 的有利補(bǔ)充。
NoSQL != No SQL,而是:
NoSQL = Not Only SQL
典型的 NoSQL 方案分為4類:
Redis 是典型,其 value 是具體的數(shù)據(jù)結(jié)構(gòu),包括 string, hash, list, set, sorted set, bitmap, hyperloglog,常被稱為數(shù)據(jù)結(jié)構(gòu)服務(wù)器。
以 list 為例:
LPOP key 是移除并返回隊列左邊的第一個元素。
如果用關(guān)系數(shù)據(jù)庫就比較麻煩了,需要操作:
Redis 的缺點主要體現(xiàn)在不支持完成的ACID事務(wù),只能保證隔離性和一致性,無法保證原子性和持久性。
最大的特點是 no-schema,無需在使用前定義字段,讀取一個不存在的字段也不會導(dǎo)致語法錯誤。
特點:
以電商為例,不同商品的屬性差異很大,如冰箱和電腦,這種差異性在關(guān)系數(shù)據(jù)庫中會有很大的麻煩,而使用文檔數(shù)據(jù)庫則非常方便。
文檔數(shù)據(jù)庫的主要缺點:
關(guān)系數(shù)據(jù)庫是按行來存儲的,列式數(shù)據(jù)庫是按照列來存儲數(shù)據(jù)。
按行存儲的優(yōu)勢:
在某些場景下,這些優(yōu)勢就成為劣勢了,例如,計算超重人員的數(shù)據(jù),只需要讀取體重這一列進(jìn)行統(tǒng)計即可,但行式存儲會將整行數(shù)據(jù)讀取到內(nèi)存中,很浪費。
而列式存儲中,只需要讀取體重這列的數(shù)據(jù)即可,I/O 將大大減少。
除了節(jié)省I/O,列式存儲還有更高的壓縮比,可以節(jié)省存儲空間。普通行式數(shù)據(jù)庫的壓縮比在 3:1 到 5:1 左右,列式數(shù)據(jù)庫在 8:1 到 30:1,因為單個列的數(shù)據(jù)相似度更高。
列式存儲的隨機(jī)寫效率遠(yuǎn)低于行式存儲,因為行式存儲時同一行多個列都存儲在連續(xù)空間中,而列式存儲將不同列存儲在不連續(xù)的空間。
一般將列式存儲應(yīng)用在離線大數(shù)據(jù)分析統(tǒng)計場景,因為這時主要針對部分列進(jìn)行操作,而且數(shù)據(jù)寫入后無須更新。
關(guān)系數(shù)據(jù)庫通過索引進(jìn)行快速查詢,但在全文搜索的情景下,索引就不夠了,因為:
假設(shè)有一個交友網(wǎng)站,信息表如下:
需要匹配性別、地點、語言列。
需要匹配性別、地點、愛好列。
實際搜索中,各種排列組合非常多,關(guān)系數(shù)據(jù)庫很難支持。
全文搜索引擎是使用 倒排索引 技術(shù),建立單詞到文檔的索引,例如上面的表信息建立倒排索引:
所以特別適合根據(jù)關(guān)鍵詞來查詢文檔內(nèi)容。
上面介紹了幾種典型的NoSQL方案,及各自的適用場景和特點,您可以根據(jù)實際需求進(jìn)行選擇。
NoSQL 數(shù)據(jù)庫因其功能性、易于開發(fā)性和可擴(kuò)展性而廣受認(rèn)可,它們越來越多地用于大數(shù)據(jù)和實時 Web 應(yīng)用程序,在本文中,我們通過示例討論 NoSQL、何時使用 NoSQL 與 SQL 及其用例。
NoSQL是一種下一代數(shù)據(jù)庫管理系統(tǒng) (DBMS)。NoSQL 數(shù)據(jù)庫具有靈活的模式,可用于構(gòu)建具有大量數(shù)據(jù)和高負(fù)載的現(xiàn)代應(yīng)用程序。
“NoSQL”一詞最初是由 Carlo Strozzi 在 1998 年創(chuàng)造的,盡管自 1960 年代后期以來就已經(jīng)存在類似的數(shù)據(jù)庫。然而,NoSQL 的發(fā)展始于 2009 年初,并且發(fā)展迅速。
在處理大量數(shù)據(jù)時,任何關(guān)系數(shù)據(jù)庫管理系統(tǒng) (RDBMS) 的響應(yīng)時間都會變慢。為了解決這個問題,我們可以通過升級現(xiàn)有硬件來“擴(kuò)大”信息系統(tǒng),這非常昂貴。但是,NoSQL 可以更好地橫向擴(kuò)展并且更具成本效益。
NoSQL 對于非結(jié)構(gòu)化或非常大的數(shù)據(jù)對象(例如聊天日志數(shù)據(jù)、視頻或圖像)非常有用,這就是為什么 NoSQL 在微軟、谷歌、亞馬遜、Meta (Facebook) 等互聯(lián)網(wǎng)巨頭中特別受歡迎的原因。
一些流行的 NoSQL 數(shù)據(jù)庫包括:
隨著企業(yè)更快地積累更大的數(shù)據(jù)集,結(jié)構(gòu)化數(shù)據(jù)和關(guān)系模式并不總是適合。有必要使用非結(jié)構(gòu)化數(shù)據(jù)和大型對象來更好地捕獲這些信息。
傳統(tǒng)的 RDBMS 使用 SQL(結(jié)構(gòu)化查詢語言)語法來存儲和檢索結(jié)構(gòu)化數(shù)據(jù),相反,NoSQL 數(shù)據(jù)庫包含廣泛的功能,可以存儲和檢索結(jié)構(gòu)化、半結(jié)構(gòu)化、非結(jié)構(gòu)化和多態(tài)數(shù)據(jù)。
有時,NoSQL 也被稱為“ 不僅僅是 SQL ”,強(qiáng)調(diào)它可能支持類似 SQL 的語言或與 SQL 數(shù)據(jù)庫并列。SQL 和 NoSQL DBMS 之間的一個區(qū)別是 JOIN 功能。SQL 數(shù)據(jù)庫使用 JOIN 子句來組合來自兩個或多個表的行,因為 NoSQL 數(shù)據(jù)庫本質(zhì)上不是表格的,所以這個功能并不總是可行或相關(guān)的。
但是,一些 NoSQL DBMS 可以執(zhí)行類似于 JOIN的操作——就像 MongoDB 一樣。這并不意味著不再需要 SQL DBMS,相反,NoSQL 和 SQL 數(shù)據(jù)庫傾向于以不同的方式解決類似的問題。
一般來說,在以下情況下,NoSQL 比 SQL 更可取:
許多行業(yè)都在采用 NoSQL,取代關(guān)系數(shù)據(jù)庫,從而為某些業(yè)務(wù)應(yīng)用程序提供更高的靈活性和可擴(kuò)展性,下面給出了 NoSQL 數(shù)據(jù)庫的一些企業(yè)用例。
內(nèi)容管理是一組用于收集、管理、傳遞、檢索和發(fā)布任何格式的信息的過程,包括文本、圖像、音頻和視頻。NoSQL 數(shù)據(jù)庫可以通過其靈活和開放的數(shù)據(jù)模型為存儲多媒體內(nèi)容提供更好的選擇。
例如,福布斯在短短幾個月內(nèi)就構(gòu)建了一個基于 MongoDB 的定制內(nèi)容管理系統(tǒng),以更低的成本為他們提供了更大的敏捷性。
大數(shù)據(jù)是指太大而無法通過傳統(tǒng)處理系統(tǒng)處理的數(shù)據(jù)集,實時存儲和檢索大數(shù)據(jù)的系統(tǒng)在分析 歷史 數(shù)據(jù)的同時使用流處理來攝取新數(shù)據(jù),這是一系列非常適合 NoSQL 數(shù)據(jù)庫的功能。
Zoom使用 DynamoDB(按需模式)使其數(shù)據(jù)能夠在沒有性能問題的情況下進(jìn)行擴(kuò)展,即使該服務(wù)在 COVID-19 大流行的早期使用量激增。
物聯(lián)網(wǎng)設(shè)備具有連接到互聯(lián)網(wǎng)或通信網(wǎng)絡(luò)的嵌入式軟件和傳感器,能夠在無需人工干預(yù)的情況下收集和共享數(shù)據(jù)。隨著數(shù)十億臺設(shè)備生成數(shù)不清的數(shù)據(jù),IoT NoSQL 數(shù)據(jù)庫為 IoT 服務(wù)提供商提供了可擴(kuò)展性和更靈活的架構(gòu)。
Freshub就是這樣的一項服務(wù),它從 MySQL 切換到 MongoDB,以更好地處理其大型、動態(tài)、非統(tǒng)一的數(shù)據(jù)集。
擁有數(shù)十億智能手機(jī)用戶,可擴(kuò)展性正成為在移動設(shè)備上提供服務(wù)的企業(yè)面臨的最大挑戰(zhàn)。具有更靈活數(shù)據(jù)模型的 NoSQL DBMS 通常是完美的解決方案。
例如,The Weather Channel使用 MongoDB 數(shù)據(jù)庫每分鐘處理數(shù)百萬個請求,同時還處理用戶數(shù)據(jù)并提供天氣更新。
大數(shù)據(jù)分析工具有:
1、R-編程
R 編程是對所有人免費的最好的大數(shù)據(jù)分析工具之一。它是一種領(lǐng)先的統(tǒng)計編程語言,可用于統(tǒng)計分析、科學(xué)計算、數(shù)據(jù)可視化等。R 編程語言還可以擴(kuò)展自身以執(zhí)行各種大數(shù)據(jù)分析操作。
在這個強(qiáng)大的幫助下;語言,數(shù)據(jù)科學(xué)家可以輕松創(chuàng)建統(tǒng)計引擎,根據(jù)相關(guān)和準(zhǔn)確的數(shù)據(jù)收集提供更好、更精確的數(shù)據(jù)洞察力。它具有類數(shù)據(jù)處理和存儲。我們還可以在 R 編程中集成其他數(shù)據(jù)分析工具。
除此之外,您還可以與任何編程語言(例如 Java、C、Python)集成,以提供更快的數(shù)據(jù)傳輸和準(zhǔn)確的分析。R 提供了大量可用于任何數(shù)據(jù)集的繪圖和圖形。
2、Apache Hadoop
Apache Hadoop 是領(lǐng)先的大數(shù)據(jù)分析工具開源。它是一個軟件框架,用于在商品硬件的集群上存儲數(shù)據(jù)和運(yùn)行應(yīng)用程序。它是由軟件生態(tài)系統(tǒng)組成的領(lǐng)先框架。
Hadoop 使用其 Hadoop 分布式文件系統(tǒng)或 HDFS 和 MapReduce。它被認(rèn)為是大數(shù)據(jù)分析的頂級數(shù)據(jù)倉庫。它具有在數(shù)百臺廉價服務(wù)器上存儲和分發(fā)大數(shù)據(jù)集的驚人能力。
這意味著您無需任何額外費用即可執(zhí)行大數(shù)據(jù)分析。您還可以根據(jù)您的要求向其添加新節(jié)點,它永遠(yuǎn)不會讓您失望。
3、MongoDB
MongoDB 是世界領(lǐng)先的數(shù)據(jù)庫軟件。它基于 NoSQL 數(shù)據(jù)庫,可用于存儲比基于 RDBMS 的數(shù)據(jù)庫軟件更多的數(shù)據(jù)量。MongoDB 功能強(qiáng)大,是最好的大數(shù)據(jù)分析工具之一。
它使用集合和文檔,而不是使用行和列。文檔由鍵值對組成,即MongoDB 中的一個基本數(shù)據(jù)單元。文檔可以包含各種單元。但是大小、內(nèi)容和字段數(shù)量因 MongoDB 中的文檔而異。
MongoDB 最好的部分是它允許開發(fā)人員更改文檔結(jié)構(gòu)。文檔結(jié)構(gòu)可以基于程序員在各自的編程語言中定義的類和對象。
MongoDB 有一個內(nèi)置的數(shù)據(jù)模型,使程序員能夠理想地表示層次關(guān)系來存儲數(shù)組和其他元素。
4、RapidMiner
RapidMiner 是分析師集成數(shù)據(jù)準(zhǔn)備、機(jī)器學(xué)習(xí)、預(yù)測模型部署等的領(lǐng)先平臺之一。它是最好的免費大數(shù)據(jù)分析工具,可用于數(shù)據(jù)分析和文本挖掘。
它是最強(qiáng)大的工具,具有用于分析過程設(shè)計的一流圖形用戶界面。它獨立于平臺,適用于 Windows、Linux、Unix 和 macOS。它提供各種功能,例如安全控制,在可視化工作流設(shè)計器工具的幫助下減少編寫冗長代碼的需要。
它使用戶能夠采用大型數(shù)據(jù)集在 Hadoop 中進(jìn)行訓(xùn)練。除此之外,它還允許團(tuán)隊協(xié)作、集中工作流管理、Hadoop 模擬等。
它還組裝請求并重用 Spark 容器以對流程進(jìn)行智能優(yōu)化。RapidMiner有五種數(shù)據(jù)分析產(chǎn)品,即RapidMiner Studio Auto Model、Auto Model、RapidMiner Turbo Prep、RapidMiner Server和RapidMiner Radoop。
5、Apache Spark
Apache Spark 是最好、最強(qiáng)大的開源大數(shù)據(jù)分析工具之一。借助其數(shù)據(jù)處理框架,它可以處理大量數(shù)據(jù)集。通過結(jié)合或其他分布式計算工具,在多臺計算機(jī)上分發(fā)數(shù)據(jù)處理任務(wù)非常容易。
它具有用于流式 SQL、機(jī)器學(xué)習(xí)和圖形處理支持的內(nèi)置功能。它還使該站點成為大數(shù)據(jù)轉(zhuǎn)換的最快速和通用的生成器。我們可以在內(nèi)存中以快 100 倍的速度處理數(shù)據(jù),而在磁盤中則快 10 倍。
除此之外,它還擁有 80 個高級算子,可以更快地構(gòu)建并行應(yīng)用程序。它還提供 Java 中的高級 API。該平臺還提供了極大的靈活性和多功能性,因為它適用于不同的數(shù)據(jù)存儲,如 HDFS、Openstack 和 Apache Cassandra。
6、Microsoft Azure
Microsoft Azure 是領(lǐng)先的大數(shù)據(jù)分析工具之一。Microsoft Azure 也稱為 Windows Azure。它是 Microsoft 處理的公共云計算平臺,是提供包括計算、分析、存儲和網(wǎng)絡(luò)在內(nèi)的廣泛服務(wù)的領(lǐng)先平臺。
Windows Azure 提供兩類標(biāo)準(zhǔn)和高級的大數(shù)據(jù)云產(chǎn)品。它可以無縫處理大量數(shù)據(jù)工作負(fù)載。
除此之外,Microsoft Azure 還擁有一流的分析能力和行業(yè)領(lǐng)先的 SLA 以及企業(yè)級安全和監(jiān)控。它也是開發(fā)人員和數(shù)據(jù)科學(xué)家的最佳和高效平臺。它提供了在最先進(jìn)的應(yīng)用程序中很容易制作的實時數(shù)據(jù)。
無需 IT 基礎(chǔ)架構(gòu)或虛擬服務(wù)器進(jìn)行處理。它可以輕松嵌入其他編程語言,如 JavaScript 和 C#。
7、Zoho Analytics
Zoho Analytics 是最可靠的大數(shù)據(jù)分析工具之一。它是一種 BI 工具,可以無縫地用于數(shù)據(jù)分析,并幫助我們直觀地分析數(shù)據(jù)以更好地理解原始數(shù)據(jù)。
同樣,任何其他分析工具都允許我們集成多個數(shù)據(jù)源,例如業(yè)務(wù)應(yīng)用程序、數(shù)據(jù)庫軟件、云存儲、CRM 等等。我們還可以在方便時自定義報告,因為它允許我們生成動態(tài)且高度自定義的可操作報告。
在 Zoho 分析中上傳數(shù)據(jù)也非常靈活和容易。我們還可以在其中創(chuàng)建自定義儀表板,因為它易于部署和實施。世界各地的用戶廣泛使用該平臺。此外,它還使我們能夠在應(yīng)用程序中生成評論威脅,以促進(jìn)員工和團(tuán)隊之間的協(xié)作。
它是最好的大數(shù)據(jù)分析工具,與上述任何其他工具相比,它需要的知識和培訓(xùn)更少。因此,它是初創(chuàng)企業(yè)和入門級企業(yè)的最佳選擇。
以上內(nèi)容參考 百度百科——大數(shù)據(jù)分析
文章名稱:nosql大數(shù)據(jù)分析,請簡要總結(jié)一下nosql數(shù)據(jù)庫的技術(shù)特點
文章位置:http://aaarwkj.com/article46/dssighg.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供搜索引擎優(yōu)化、軟件開發(fā)、品牌網(wǎng)站制作、網(wǎng)站導(dǎo)航、App開發(fā)、微信小程序
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)